IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v64y2008i3p707-715.html
   My bibliography  Save this article

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

Author

Listed:
  • Min Zhang
  • Anastasios A. Tsiatis
  • Marie Davidian

Abstract

Summary The primary goal of a randomized clinical trial is to make comparisons among two or more treatments. For example, in a two‐arm trial with continuous response, the focus may be on the difference in treatment means; with more than two treatments, the comparison may be based on pairwise differences. With binary outcomes, pairwise odds ratios or log odds ratios may be used. In general, comparisons may be based on meaningful parameters in a relevant statistical model. Standard analyses for estimation and testing in this context typically are based on the data collected on response and treatment assignment only. In many trials, auxiliary baseline covariate information may also be available, and it is of interest to exploit these data to improve the efficiency of inferences. Taking a semiparametric theory perspective, we propose a broadly applicable approach to adjustment for auxiliary covariates to achieve more efficient estimators and tests for treatment parameters in the analysis of randomized clinical trials. Simulations and applications demonstrate the performance of the methods.

Suggested Citation

  • Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
  • Handle: RePEc:bla:biomet:v:64:y:2008:i:3:p:707-715
    DOI: 10.1111/j.1541-0420.2007.00976.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1541-0420.2007.00976.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1541-0420.2007.00976.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang L. & Tsiatis A. A., 2001. "Efficiency Study of Estimators for a Treatment Effect in a Pretest-Posttest Trial," The American Statistician, American Statistical Association, vol. 55, pages 314-321, November.
    2. Xiaotong Shen & Hsin-Cheng Huang & Jimmy Ye, 2004. "Inference After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 751-762, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jitendra Ganju, 2004. "Some Unexamined Aspects of Analysis of Covariance in Pretest–Posttest Studies," Biometrics, The International Biometric Society, vol. 60(3), pages 829-833, September.
    2. Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
    3. Pierre Chausse & George Luta, 2017. "Casual Inference using Generalized Empirical Likelihood Methods," Working Papers 1707, University of Waterloo, Department of Economics, revised Dec 2017.
    4. Peter Z. Schochet, 2018. "Design-Based Estimators for Average Treatment Effects for Multi-Armed RCTs," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 568-593, October.
    5. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(2), pages 404-447, April.
    6. repec:mpr:mprres:6094 is not listed on IDEAS
    7. David Benkeser & Iván Díaz & Alex Luedtke & Jodi Segal & Daniel Scharfstein & Michael Rosenblum, 2021. "Improving precision and power in randomized trials for COVID‐19 treatments using covariate adjustment, for binary, ordinal, and time‐to‐event outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1467-1481, December.
    8. John A. List & Azeem M. Shaikh & Atom Vayalinkal, 2023. "Multiple testing with covariate adjustment in experimental economics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 920-939, September.
    9. Donald P. Green & Winston Lin & Claudia Gerber, 2018. "Optimal Allocation of Interviews to Baseline and Endline Surveys in Place-Based Randomized Trials and Quasi-Experiments," Evaluation Review, , vol. 42(4), pages 391-422, August.
    10. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    11. Laura Bojke & Karl Claxton & Stephen Palmer & Mark Sculpher, 2006. "Defining and characterising structural uncertainty in decision analytic models," Working Papers 009cherp, Centre for Health Economics, University of York.
    12. Peter Z. Schochet, 2020. "Analyzing Grouped Administrative Data for RCTs Using Design-Based Methods," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 32-57, February.
    13. repec:mpr:mprres:5699 is not listed on IDEAS
    14. Randy C. S. Lai & Jan Hannig & Thomas C. M. Lee, 2015. "Generalized Fiducial Inference for Ultrahigh-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 760-772, June.
    15. Peter Z. Schochet, 2010. "The Late Pretest Problem in Randomized Control Trials of Education Interventions," Journal of Educational and Behavioral Statistics, , vol. 35(4), pages 379-406, August.
    16. Peter Z. Schochet, "undated". "The Late Pretest Problem in Randomized Control Trials of Education Interventions," Mathematica Policy Research Reports fb514df5dbb84a5dbea79865c, Mathematica Policy Research.
    17. Jonathan W. Bartlett, 2020. "Robustness of ANCOVA in randomized trials with unequal randomization," Biometrics, The International Biometric Society, vol. 76(3), pages 1036-1038, September.
    18. Peter Z. Schochet, "undated". "Technical Methods Report: Statistical Power for Regression Discontinuity Designs in Education Evaluations," Mathematica Policy Research Reports 61fb6c057561451a8a6074508, Mathematica Policy Research.
    19. Rosenblum Michael & van der Laan Mark J., 2010. "Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-44, April.
    20. J. R. Lockwood & Daniel F. McCaffrey, 2019. "Impact Evaluation Using Analysis of Covariance With Error-Prone Covariates That Violate Surrogacy," Evaluation Review, , vol. 43(6), pages 335-369, December.
    21. Peter Z. Schochet, 2013. "Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference," Journal of Educational and Behavioral Statistics, , vol. 38(3), pages 219-238, June.
    22. repec:mpr:mprres:6372 is not listed on IDEAS
    23. Azzam, Tarek & Bates, Michael D. & Fairris, David, 2022. "Do learning communities increase first year college retention? Evidence from a randomized control trial," Economics of Education Review, Elsevier, vol. 89(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:64:y:2008:i:3:p:707-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.