IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v152y2016icp82-99.html
   My bibliography  Save this article

A nonparametric test for the evaluation of group sequential clinical trials with covariate information

Author

Listed:
  • Yuan, Ao
  • Zheng, Yanxun
  • Huang, Peng
  • Tan, Ming T.

Abstract

Group sequential design is frequently used in clinical trials to evaluate a new treatment vs a control. Although nonparametric methods have the advantage of robustness, most such methods do not take into consideration of covariate information that could be used to improve the test accuracy if incorporated properly. We address this problem using a two-sample U-statistic that incorporates covariate information into the test statistic. The asymptotic properties of the proposed estimator are presented. Simulations are conducted to evaluate the performance of the test. We then apply the proposed method to the analysis of data from a Parkinson disease clinical trial, and demonstrate that the significance of the effect associated with deprenyl could be detected at an early stage.

Suggested Citation

  • Yuan, Ao & Zheng, Yanxun & Huang, Peng & Tan, Ming T., 2016. "A nonparametric test for the evaluation of group sequential clinical trials with covariate information," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 82-99.
  • Handle: RePEc:eee:jmvana:v:152:y:2016:i:c:p:82-99
    DOI: 10.1016/j.jmva.2016.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaomin Lu & Anastasios A. Tsiatis, 2008. "Improving the efficiency of the log-rank test using auxiliary covariates," Biometrika, Biometrika Trust, vol. 95(3), pages 679-694.
    2. Michael R. Kosorok & Shi Yuanjun & David L. DeMets, 2004. "Design and Analysis of Group Sequential Clinical Trials with Multiple Primary Endpoints," Biometrics, The International Biometric Society, vol. 60(1), pages 134-145, March.
    3. Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
    4. Yuan, Ao & He, Wenqing & Wang, Binhuan & Qin, Gengsheng, 2012. "U-statistic with side information," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 20-38.
    5. Xiaoping Xiong & Ming Tan & James Boyett, 2003. "Sequential Conditional Probability Ratio Tests for Normalized Test Statistic on Information Time," Biometrics, The International Biometric Society, vol. 59(3), pages 624-631, September.
    6. Alexander Schacht & Kris Bogaerts & Erich Bluhmki & Emmanuel Lesaffre, 2008. "A New Nonparametric Approach for Baseline Covariate Adjustment for Two-Group Comparative Studies," Biometrics, The International Biometric Society, vol. 64(4), pages 1110-1116, December.
    7. Lin, Huazhen & Li, Yi & Tan, Ming T., 2013. "Estimating a unitary effect summary based on combined survival and quantitative outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 129-139.
    8. Peng Huang & Barbara C. Tilley & Robert F. Woolson & Stuart Lipsitz, 2005. "Adjusting O'Brien's Test to Control Type I Error for the Generalized Nonparametric Behrens–Fisher Problem," Biometrics, The International Biometric Society, vol. 61(2), pages 532-539, June.
    9. Liu, Aiyi & Li, Qizhai & Liu, Chunling & Yu, Kai & Yu, Kai F., 2010. "A Rank-Based Test for Comparison of Multidimensional Outcomes," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 578-587.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    2. Layla Parast & Beth Ann Griffin, 2017. "Landmark estimation of survival and treatment effects in observational studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 161-182, April.
    3. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    4. Hennessy Jonathan & Dasgupta Tirthankar & Miratrix Luke & Pattanayak Cassandra & Sarkar Pradipta, 2016. "A Conditional Randomization Test to Account for Covariate Imbalance in Randomized Experiments," Journal of Causal Inference, De Gruyter, vol. 4(1), pages 61-80, March.
    5. Zhong Gao & Anindya Roy & Ming Tan, 2016. "A Two-Stage Adaptive Targeted Clinical Trial Design for Biomarker Performance-Based Sample Size Re-Estimation," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 66-76, June.
    6. Liansheng Tang & Ming Tan & Xiao-Hua Zhou, 2011. "A sequential conditional probability ratio test procedure for comparing diagnostic tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1623-1632, July.
    7. Lola Etievant & Joshua N. Sampson & Mitchell H. Gail, 2023. "Increasing efficiency and reducing bias when assessing HPV vaccination efficacy by using nontargeted HPV strains," Biometrics, The International Biometric Society, vol. 79(2), pages 1534-1545, June.
    8. Tianchen Qian & Constantine Frangakis & Constantin Yiannoutsos, 2020. "Deductive Semiparametric Estimation in Double-Sampling Designs with Application to PEPFAR," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 417-445, December.
    9. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    10. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    11. Ritesh Ramchandani & Dianne M. Finkelstein & David A. Schoenfeld, 2020. "Estimation for an accelerated failure time model with intermediate states as auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 1-20, January.
    12. Stephens Alisa & Tchetgen Tchetgen Eric & De Gruttola Victor, 2014. "Locally Efficient Estimation of Marginal Treatment Effects When Outcomes Are Correlated: Is the Prize Worth the Chase?," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 59-75, May.
    13. Melanie Prague & Rui Wang & Alisa Stephens & Eric Tchetgen Tchetgen & Victor DeGruttola, 2016. "Accounting for interactions and complex inter‐subject dependency in estimating treatment effect in cluster‐randomized trials with missing outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1066-1077, December.
    14. Anastasios A. Tsiatis & Marie Davidian & Shannon T. Holloway, 2023. "Estimation of the odds ratio in a proportional odds model with censored time‐lagged outcome in a randomized clinical trial," Biometrics, The International Biometric Society, vol. 79(2), pages 975-987, June.
    15. Rosenblum Michael & van der Laan Mark J., 2010. "Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-44, April.
    16. Yuanyuan Shen & Tianxi Cai, 2016. "Identifying predictive markers for personalized treatment selection," Biometrics, The International Biometric Society, vol. 72(4), pages 1017-1025, December.
    17. Zhiwei Zhang & Wei Li & Hui Zhang, 2020. "Efficient Estimation of Mann–Whitney-Type Effect Measures for Right-Censored Survival Outcomes in Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 246-262, July.
    18. Michal Juraska & Peter B. Gilbert, 2016. "Mark-specific hazard ratio model with missing multivariate marks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 606-625, October.
    19. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    20. Koning, Pierre & Muller, Paul & Prudon, Roger, 2022. "Do disability benefits hinder work resumption after recovery?," Journal of Health Economics, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:152:y:2016:i:c:p:82-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.