IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v23y2017i2d10.1007_s10985-016-9358-z.html
   My bibliography  Save this article

Landmark estimation of survival and treatment effects in observational studies

Author

Listed:
  • Layla Parast

    (RAND Corporation)

  • Beth Ann Griffin

    (RAND Corporation)

Abstract

Clinical studies aimed at identifying effective treatments to reduce the risk of disease or death often require long term follow-up of participants in order to observe a sufficient number of events to precisely estimate the treatment effect. In such studies, observing the outcome of interest during follow-up may be difficult and high rates of censoring may be observed which often leads to reduced power when applying straightforward statistical methods developed for time-to-event data. Alternative methods have been proposed to take advantage of auxiliary information that may potentially improve efficiency when estimating marginal survival and improve power when testing for a treatment effect. Recently, Parast et al. (J Am Stat Assoc 109(505):384–394, 2014) proposed a landmark estimation procedure for the estimation of survival and treatment effects in a randomized clinical trial setting and demonstrated that significant gains in efficiency and power could be obtained by incorporating intermediate event information as well as baseline covariates. However, the procedure requires the assumption that the potential outcomes for each individual under treatment and control are independent of treatment group assignment which is unlikely to hold in an observational study setting. In this paper we develop the landmark estimation procedure for use in an observational setting. In particular, we incorporate inverse probability of treatment weights (IPTW) in the landmark estimation procedure to account for selection bias on observed baseline (pretreatment) covariates. We demonstrate that consistent estimates of survival and treatment effects can be obtained by using IPTW and that there is improved efficiency by using auxiliary intermediate event and baseline information. We compare our proposed estimates to those obtained using the Kaplan–Meier estimator, the original landmark estimation procedure, and the IPTW Kaplan–Meier estimator. We illustrate our resulting reduction in bias and gains in efficiency through a simulation study and apply our procedure to an AIDS dataset to examine the effect of previous antiretroviral therapy on survival.

Suggested Citation

  • Layla Parast & Beth Ann Griffin, 2017. "Landmark estimation of survival and treatment effects in observational studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 161-182, April.
  • Handle: RePEc:spr:lifeda:v:23:y:2017:i:2:d:10.1007_s10985-016-9358-z
    DOI: 10.1007/s10985-016-9358-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-016-9358-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-016-9358-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaomin Lu & Anastasios A. Tsiatis, 2008. "Improving the efficiency of the log-rank test using auxiliary covariates," Biometrika, Biometrika Trust, vol. 95(3), pages 679-694.
    2. Cheryl L. Faucett & Nathaniel Schenker & Jeremy M. G. Taylor, 2002. "Survival Analysis Using Auxiliary Variables Via Multiple Imputation, with Application to AIDS Clinical Trial Data," Biometrics, The International Biometric Society, vol. 58(1), pages 37-47, March.
    3. Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
    4. Tianxi Cai & Lu Tian & L. J. Wei, 2005. "Semiparametric Box–Cox power transformation models for censored survival observations," Biometrika, Biometrika Trust, vol. 92(3), pages 619-632, September.
    5. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    6. Lu Tian & Tianxi Cai & Els Goetghebeur & L. J. Wei, 2007. "Model evaluation based on the sampling distribution of estimated absolute prediction error," Biometrika, Biometrika Trust, vol. 94(2), pages 297-311.
    7. T. Cai & L. Tian & Hajime Uno & Scott D. Solomon & L. J. Wei, 2010. "Calibrating parametric subject-specific risk estimation," Biometrika, Biometrika Trust, vol. 97(2), pages 389-404.
    8. Pei-Yun Chen & Anastasios A. Tsiatis, 2001. "Causal Inference on the Difference of the Restricted Mean Lifetime Between Two Groups," Biometrics, The International Biometric Society, vol. 57(4), pages 1030-1038, December.
    9. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    10. Xiaofei Bai & Anastasios A. Tsiatis & Sean M. O'Brien, 2013. "Doubly-Robust Estimators of Treatment-Specific Survival Distributions in Observational Studies with Stratified Sampling," Biometrics, The International Biometric Society, vol. 69(4), pages 830-839, December.
    11. Yun Li & Jeremy M. G. Taylor & Roderick J. A. Little, 2011. "A Shrinkage Approach for Estimating a Treatment Effect Using Intermediate Biomarker Data in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(4), pages 1434-1441, December.
    12. Layla Parast & Lu Tian & Tianxi Cai, 2014. "Landmark Estimation of Survival and Treatment Effect in a Randomized Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 384-394, March.
    13. Yuhyun Park, 2003. "Estimating subject-specific survival functions under the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(3), pages 717-723, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    2. David Benkeser & Iván Díaz & Alex Luedtke & Jodi Segal & Daniel Scharfstein & Michael Rosenblum, 2021. "Improving precision and power in randomized trials for COVID‐19 treatments using covariate adjustment, for binary, ordinal, and time‐to‐event outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1467-1481, December.
    3. Nicholas Williams & Michael Rosenblum & Iván Díaz, 2022. "Optimising precision and power by machine learning in randomised trials with ordinal and time‐to‐event outcomes with an application to COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2156-2178, October.
    4. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    5. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    6. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    7. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    8. Layla Parast & Carolyn M. Rutter, 2017. "Discussion of “A risk-based measure of time-varying prognostic discrimination for survival models,” by C. Jason Liang and Patrick J. Heagerty," Biometrics, The International Biometric Society, vol. 73(3), pages 742-744, September.
    9. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    10. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    12. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    13. Yuan, Ao & Zheng, Yanxun & Huang, Peng & Tan, Ming T., 2016. "A nonparametric test for the evaluation of group sequential clinical trials with covariate information," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 82-99.
    14. Denis Agniel & Tianxi Cai, 2017. "Analysis of multiple diverse phenotypes via semiparametric canonical correlation analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1254-1265, December.
    15. Yuanyuan Shen & Tianxi Cai, 2016. "Identifying predictive markers for personalized treatment selection," Biometrics, The International Biometric Society, vol. 72(4), pages 1017-1025, December.
    16. Guanhua Chen & Donglin Zeng & Michael R. Kosorok, 2016. "Personalized Dose Finding Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1509-1521, October.
    17. Qi Gong & Douglas E. Schaubel, 2017. "Estimating the average treatment effect on survival based on observational data and using partly conditional modeling," Biometrics, The International Biometric Society, vol. 73(1), pages 134-144, March.
    18. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    19. Shu Yang & Guido W. Imbens & Zhanglin Cui & Douglas E. Faries & Zbigniew Kadziola, 2016. "Propensity score matching and subclassification in observational studies with multi‐level treatments," Biometrics, The International Biometric Society, vol. 72(4), pages 1055-1065, December.
    20. Zhiwei Zhang & Wei Li & Hui Zhang, 2020. "Efficient Estimation of Mann–Whitney-Type Effect Measures for Right-Censored Survival Outcomes in Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 246-262, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:23:y:2017:i:2:d:10.1007_s10985-016-9358-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.