The Finite Sample Performance of Semi- and Nonparametric Estimators for Treatment Effects and Policy Evaluation
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The finite sample performance of semi- and nonparametric estimators for treatment effects and policy evaluation," FSES Working Papers 454, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
References listed on IDEAS
- Stefanie Behncke & Markus Frölich & Michael Lechner, 2010. "A Caseworker Like Me - Does The Similarity Between The Unemployed and Their Caseworkers Increase Job Placements?," Economic Journal, Royal Economic Society, vol. 120(549), pages 1430-1459, December.
- Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
- Markus Frlich, 2004. "Finite-Sample Properties of Propensity-Score Matching and Weighting Estimators," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 77-90, February.
- Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
- Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
- Michael Lechner & Anthony Strittmatter, 2019.
"Practical procedures to deal with common support problems in matching estimation,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
- Lechner, Michael & Strittmatter, Anthony, 2014. "Practical Procedures to Deal with Common Support Problems in Matching Estimation," Economics Working Paper Series 1410, University of St. Gallen, School of Economics and Political Science.
- Lechner, Michael & Strittmatter, Anthony, 2017. "Practical Procedures to Deal with Common Support Problems in Matching Estimation," IZA Discussion Papers 10532, Institute of Labor Economics (IZA).
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Matias D. Cattaneo, 2010. "multi-valued treatment effects," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
- Martin Huber, 2015.
"Causal Pitfalls in the Decomposition of Wage Gaps,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.
- Huber, Martin, 2014. "Causal pitfalls in the decomposition of wage gaps," Economics Working Paper Series 1405, University of St. Gallen, School of Economics and Political Science.
- Li, Qi & Racine, Jeffrey S. & Wooldridge, Jeffrey M., 2009. "Efficient Estimation of Average Treatment Effects with Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 206-223.
- Martin Huber & Michael Lechner & Giovanni Mellace, 2016.
"The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
- Huber, Martin & Mellace, Giovanni & Lechner, Michael, 2014. "The finite sample performance of estimators for mediation analysis under sequential conditional independence," Economics Working Paper Series 1415, University of St. Gallen, School of Economics and Political Science, revised Nov 2014.
- Stefanie Behncke & Markus Frölich & Michael Lechner, 2010.
"Unemployed and their caseworkers: should they be friends or foes?,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 67-92, January.
- Stefanie Behncke & Markus Fröhlich & Michael Lechner, 2007. "Unemployed and their Caseworkers: Should they be Friends or Foes?," University of St. Gallen Department of Economics working paper series 2007 2007-45, Department of Economics, University of St. Gallen.
- Lechner, Michael & Frölich, Markus & Behncke, Stefanie, 2007. "Unemployed and Their Caseworkers: Should They Be Friends or Foes?," CEPR Discussion Papers 6558, C.E.P.R. Discussion Papers.
- Behncke, Stefanie & Frölich, Markus & Lechner, Michael, 2007. "Unemployed and Their Caseworkers: Should They Be Friends or Foes?," IZA Discussion Papers 3149, Institute of Labor Economics (IZA).
- Alberto Abadie & Guido W. Imbens, 2011.
"Bias-Corrected Matching Estimators for Average Treatment Effects,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
- Abadie, Alberto & Imbens, Guido W., 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 1-11.
- Zhao, Zhong, 2008.
"Sensitivity of propensity score methods to the specifications,"
Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
- Zhao, Zhong, 2005. "Sensitivity of Propensity Score Methods to the Specifications," IZA Discussion Papers 1873, Institute of Labor Economics (IZA).
- James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998.
"Characterizing Selection Bias Using Experimental Data,"
Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
- James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," NBER Working Papers 6699, National Bureau of Economic Research, Inc.
- Michael Lechner & Ruth Miquel & Conny Wunsch, 2011.
"Long‐Run Effects Of Public Sector Sponsored Training In West Germany,"
Journal of the European Economic Association, European Economic Association, vol. 9(4), pages 742-784, August.
- Lechner, Michael & Miquel, Ruth & Wunsch, Conny, 2004. "Long-Run Effects of Public Sector Sponsored Training in West Germany," IZA Discussion Papers 1443, Institute of Labor Economics (IZA).
- Miquel, Ruth & Lechner, Michael & Wunsch, Conny, 2005. "Long-Run Effects of Public Sector Sponsored Training in West Germany," ZEW Discussion Papers 05-02, ZEW - Leibniz Centre for European Economic Research.
- Michael Lechner & Ruth Miquel & Conny Wunsch, 2004. "Long-run Effects of Public Sector Sponsored Training in West Germany," University of St. Gallen Department of Economics working paper series 2004 2004-19, Department of Economics, University of St. Gallen.
- Lechner, Michael & Miquel, Ruth & Wunsch, Conny, 2005. "Long-run effects of public sector sponsored training in West Germany," IAB-Discussion Paper 200503, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Miquel, Ruth & Lechner, Michael & Wunsch, Conny, 2005. "Long run Effects of Public Sector Sponsored Training in West Germany," CEPR Discussion Papers 4851, C.E.P.R. Discussion Papers.
- Klein, Roger W & Spady, Richard H, 1993.
"An Efficient Semiparametric Estimator for Binary Response Models,"
Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
- Klein, R.W. & Spady, R.H., 1991. "An Efficient Semiparametric Estimator for Binary Response Models," Papers 70, Bell Communications - Economic Research Group.
- Zhong Zhao, 2004. "Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 91-107, February.
- Hugo Ñopo, 2008.
"Matching as a Tool to Decompose Wage Gaps,"
The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 290-299, May.
- Hugo Nopo, 2003. "Matching as a Tool to Decompose Wage Gaps," Middlebury College Working Paper Series 0406, Middlebury College, Department of Economics.
- Nopo, Hugo R., 2004. "Matching as a Tool to Decompose Wage Gaps," IZA Discussion Papers 981, Institute of Labor Economics (IZA).
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016.
"Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST),"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2011. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," NBER Working Papers 16928, National Bureau of Economic Research, Inc.
- Millimet, Daniel L. & Tchernis, Rusty, 2009.
"On the Specification of Propensity Scores, With Applications to the Analysis of Trade Policies,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 397-415.
- Daniel Millimet & Rusty Tchernis, 2006. "On the Specification of Propensity Scores: with Applications to the Analysis of Trade Policies," CAEPR Working Papers 2006-013, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington, revised Jan 2008.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012.
"Inverse Probability Tilting for Moment Condition Models with Missing Data,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2008. "Inverse Probability Tilting for Moment Condition Models with Missing Data," NBER Working Papers 13981, National Bureau of Economic Research, Inc.
- Martin Huber & Michael Lechner & Giovanni Mellace, 2017.
"Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism,"
The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
- Huber, Martin & Mellace, Giovanni & Lechner, Michael, 2014. "Why do tougher caseworkers increase employment? The role of programme assignment as a causal mechanism," Economics Working Paper Series 1414, University of St. Gallen, School of Economics and Political Science.
- Alexis Diamond & Jasjeet S. Sekhon, 2013. "Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 932-945, July.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020.
"The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
- Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," IZA Discussion Papers 9706, Institute of Labor Economics (IZA).
- Bodory, Hugo & Huber, Martin & Camponovo, Lorenzo & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," FSES Working Papers 466, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," Economics Working Paper Series 1604, University of St. Gallen, School of Economics and Political Science.
- Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
- Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
- van der Laan Mark J. & Polley Eric C & Hubbard Alan E., 2007. "Super Learner," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-23, September.
- Gruber Susan & van der Laan Mark J., 2010. "A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-18, August.
- Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
- Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
- A. Smith, Jeffrey & E. Todd, Petra, 2005.
"Does matching overcome LaLonde's critique of nonexperimental estimators?,"
Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
- Jeffrey Smith & Petra Todd, 2003. "Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20035, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
- Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
- Martin Huber & Michael Lechner & Andreas Steinmayr, 2015.
"Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour,"
Empirical Economics, Springer, vol. 49(1), pages 1-31, August.
- Huber, Martin & Lechner, Michael & Steinmayr, Andreas, 2012. "Radius matching on the propensity score with bias adjustment: finite sample behaviour, tuning parameters and software implementation," Economics Working Paper Series 1226, University of St. Gallen, School of Economics and Political Science.
- Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, September.
- van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
- Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
- Winfried Pohlmeier & Ruben R. Seiberlich & S. Derya Uysal, 2013. "A Simple and Successul Method to Shrink the Weight," Working Paper Series of the Department of Economics, University of Konstanz 2013-05, Department of Economics, University of Konstanz.
- Rothe, Christoph & Firpo, Sergio Pinheiro, 2013.
"Semiparametric estimation and inference using doubly robust moment conditions,"
Textos para discussão
330, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Rothe, Christoph & Firpo, Sergio, 2013. "Semiparametric Estimation and Inference Using Doubly Robust Moment Conditions," IZA Discussion Papers 7564, Institute of Labor Economics (IZA).
- Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
- Sekhon, Jasjeet S., 2011. "Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i07).
- van der Laan Mark & Gruber Susan, 2016. "One-Step Targeted Minimum Loss-based Estimation Based on Universal Least Favorable One-Dimensional Submodels," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 351-378, May.
- James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrea Albanese & Lorenzo Cappellari & Marco Leonardi, 2021.
"The effects of youth labour market reforms: evidence from Italian apprenticeships,"
Oxford Economic Papers, Oxford University Press, vol. 73(1), pages 98-121.
- Andrea Albanese & Lorenzo Cappellari & Marco Leonardi, 2017. "The Effects of Youth Labor Market Reforms: Evidence from Italian Apprenticeships," DISCE - Working Papers del Dipartimento di Economia e Finanza def057, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
- Albanese, Andrea & Cappellari, Lorenzo & Leonardi, Marco, 2017. "The Effects of Youth Labor Market Reforms: Evidence from Italian Apprenticeships," IZA Discussion Papers 10766, Institute of Labor Economics (IZA).
- Andrea Albanese & Lorenzo Cappellari & Marco Leonardi, 2017. "The Effects of Youth Labor Market Reforms: Evidence from Italian Apprenticeships," CESifo Working Paper Series 6481, CESifo.
- ALBANESE Andrea & CAPPELLARI Lorenzo & LEONARDI Marco, 2017. "The Effects of Youth Labor Market Reforms: Evidence from Italian Apprenticeships," LISER Working Paper Series 2017-13, Luxembourg Institute of Socio-Economic Research (LISER).
- Tübbicke Stefan, 2022.
"Entropy Balancing for Continuous Treatments,"
Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
- Stefan Tubbicke, 2020. "Entropy Balancing for Continuous Treatments," Papers 2001.06281, arXiv.org, revised May 2020.
- Stefan Tübbicke, 2020. "Entropy Balancing for Continuous Treatments," CEPA Discussion Papers 21, Center for Economic Policy Analysis.
- Arun Advani & Toru Kitagawa & Tymon Słoczyński, 2019.
"Mostly harmless simulations? Using Monte Carlo studies for estimator selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 893-910, September.
- Arun Advani & Toru Kitagawa & Tymon S{l}oczy'nski, 2018. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," Papers 1809.09527, arXiv.org, revised Apr 2019.
- Advani, Arun & Kitagawa, Toru & Słoczyński, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," The Warwick Economics Research Paper Series (TWERPS) 1192, University of Warwick, Department of Economics.
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," CAGE Online Working Paper Series 411, Competitive Advantage in the Global Economy (CAGE).
- Arabsheibani, Gholamreza & Gupta, Prashant & Mishra, Tapas & Parhi, Mamata, 2018.
"Wage differential between caste groups: Are younger and older cohorts different?,"
Economic Modelling, Elsevier, vol. 74(C), pages 10-23.
- Arabsheibani, G. Reza & Gupta, Prashant & Mishra, Tapas & Parhi, Mamata, 2018. "Wage differential between caste groups: are younger and older cohorts different?," LSE Research Online Documents on Economics 90510, London School of Economics and Political Science, LSE Library.
- Dirk Czarnitzki & Paul Hünermund & Nima Moshgbar, 2018.
"Public procurement as policy instrument for innovation,"
Working Papers of Department of Economics, Leuven
606259, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
- Czarnitzki, Dirk & Hünermund, Paul & Moshgbar, Nima, 2018. "Public procurement as policy instrument for innovation," ZEW Discussion Papers 18-001, ZEW - Leibniz Centre for European Economic Research.
- Dirk Czarnitzki & Paul Hünermund & Nima Moshgbar, 2018. "Public procurement as policy instrument for innovation," Working Papers of Department of Management, Strategy and Innovation, Leuven 606259, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
- Lombardi, Stefano & van den Berg, Gerard J. & Vikström, Johan, 2020.
"Empirical Monte Carlo evidence on estimation of Timing-of-Events models,"
Working Paper Series
2020:26, IFAU - Institute for Evaluation of Labour Market and Education Policy, revised 05 Jan 2021.
- Lombardi, Stefano & van den Berg, Gerard J. & Vikström, Johan, 2021. "Empirical Monte Carlo Evidence on Estimation of Timing-of-Events Models," IZA Discussion Papers 14015, Institute of Labor Economics (IZA).
- Andrea Albanese & Bart Cockx & Yannick Thuy, 2020.
"Working time reductions at the end of the career: Do they prolong the time spent in employment?,"
Empirical Economics, Springer, vol. 59(1), pages 99-141, July.
- Andrea Albanese & Bart Cockx & Yannick Thuy, 2015. "Working Time Reductions at the End of the Career. Do they prolong the Time Spent in Employment?," LIDAM Discussion Papers IRES 2015024, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Albanese, Andrea & Cockx, Bart & Thuy, Yannick, 2015. "Working Time Reductions at the End of the Career: Do They Prolong the Time Spent in Employment?," IZA Discussion Papers 9619, Institute of Labor Economics (IZA).
- Andrea Albanese & Bart Cockx & Yannick Thuy, 2015. "Working Time Reductions At The End Of The Career. Do They Prolong The Time Spent In Employment?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/916, Ghent University, Faculty of Economics and Business Administration.
- Andrea Albanese & Bart Cockx & Yannick Thuy, 2016. "Working Time Reductions at the End of the Career. Do they Prolong the Time Spent in Employment?," CESifo Working Paper Series 5695, CESifo.
- Advani, Arun & Sloczynski, Tymon, 2013.
"Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies,"
IZA Discussion Papers
7874, Institute of Labor Economics (IZA).
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 11862, Institute of Labor Economics (IZA).
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," Working Papers 124, Brandeis University, Department of Economics and International Business School.
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP56/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Sloczynski, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP64/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Słoczyński, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers 64/13, Institute for Fiscal Studies.
- Nadine Chami & Arthur Sweetman, 2019. "Payment models in primary health care: A driver of the quantity and quality of medical laboratory utilization," Health Economics, John Wiley & Sons, Ltd., vol. 28(10), pages 1166-1178, October.
- Stefania Cardinaleschi & Mirella Damiani & Fabrizio Pompei, 2020.
"Knowledge-intensive sectors and the role of collective performance-related pay,"
Industry and Innovation, Taylor & Francis Journals, vol. 27(5), pages 480-512, May.
- Stefania, Cardinaleschi & Mirella, Damiani & Fabrizio, Pompei, 2018. "Knowledge-intensive sectors and the role of collective performance-related pay," MPRA Paper 91302, University Library of Munich, Germany.
- Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.
- Zhang, Xue & Sweetman, Arthur, 2018. "Blended capitation and incentives: Fee codes inside and outside the capitated basket," Journal of Health Economics, Elsevier, vol. 60(C), pages 16-29.
- Alex Bryson & Michael White, 2019. "HRM and Small-Firm Employee Motivation: Before and After the Great Recession," ILR Review, Cornell University, ILR School, vol. 72(3), pages 749-773, May.
- Alan P. Ker & Abdoul G. Sam, 2018. "Semiparametric estimation of the link function in binary-choice single-index models," Computational Statistics, Springer, vol. 33(3), pages 1429-1455, September.
- Andrea ALBANESE & Bart COCKX, 2015.
"Permanent Wage Cost Subsidies for Older Workers. An Effective Tool for Increasing Working Time and Postponing Early Retirement?,"
LIDAM Discussion Papers IRES
2015006, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Albanese, Andrea & Cockx, Bart, 2015. "Permanent Wage Cost Subsidies for Older Workers: An Effective Tool for Increasing Working Time and Postponing Early Retirement?," IZA Discussion Papers 8988, Institute of Labor Economics (IZA).
- Andrea Albanese & Bart Cockx, 2015. "Permanent Wage Cost Subsidies for Older Workers. An Effective Tool for Increasing Working Time and Postponing Early Retirement?," CESifo Working Paper Series 5301, CESifo.
- Andrea Albanese & Bart Cockx, 2015. "Permanent Wage Cost Subsidies For Older Workers. An Effective Tool For Increasing Working Time And Postponing Early Retirement?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/902, Ghent University, Faculty of Economics and Business Administration.
- Hugo Bodory & Martin Huber & Michael Lechner, 2024.
"The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
- Hugo Bodory & Martin Huber & Michael Lechner, 2022. "The finite sample performance of instrumental variable-based estimators of the Local Average Treatment Effect when controlling for covariates," Papers 2212.07379, arXiv.org.
- Bensch, Gunther & Kluve, Jochen & Stöterau, Jonathan, 2016. "The market-based dissemination of modern-energy products as a business model for rural entrepreneurs: Evidence from Kenya," Ruhr Economic Papers 635, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Bryson, Alex & White, Michael, 2017. "HRM and Small-Firm Employee Motivation: Before and after the Recession," IZA Discussion Papers 10737, Institute of Labor Economics (IZA).
- Bensch, Gunther & Kluve, Jochen & Stöterau, Jonathan, 2021. "The market-based dissemination of energy-access technologies as a business model for rural entrepreneurs: Evidence from Kenya," Resource and Energy Economics, Elsevier, vol. 66(C).
- Jeffrey Smith & Arthur Sweetman, 2016.
"Viewpoint: Estimating the causal effects of policies and programs,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 49(3), pages 871-905, August.
- Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
- Smith, Jeffrey A. & Sweetman, Arthur, 2016. "Viewpoint: Estimating the Causal Effects of Policies and Programs," IZA Discussion Papers 10108, Institute of Labor Economics (IZA).
- Czarnitzki, Dirk & Hünermund, Paul & Moshgbar, Nima, 2020. "Public Procurement of Innovation: Evidence from a German Legislative Reform," International Journal of Industrial Organization, Elsevier, vol. 71(C).
- Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020.
"The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
- Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," Economics Working Paper Series 1604, University of St. Gallen, School of Economics and Political Science.
- Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," IZA Discussion Papers 9706, Institute of Labor Economics (IZA).
- Bodory, Hugo & Huber, Martin & Camponovo, Lorenzo & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," FSES Working Papers 466, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Advani, Arun & Sloczynski, Tymon, 2013.
"Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies,"
IZA Discussion Papers
7874, Institute of Labor Economics (IZA).
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 11862, Institute of Labor Economics (IZA).
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," Working Papers 124, Brandeis University, Department of Economics and International Business School.
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP56/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Sloczynski, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP64/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Słoczyński, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers 64/13, Institute for Fiscal Studies.
- Hugo Bodory & Martin Huber & Michael Lechner, 2024.
"The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
- Hugo Bodory & Martin Huber & Michael Lechner, 2022. "The finite sample performance of instrumental variable-based estimators of the Local Average Treatment Effect when controlling for covariates," Papers 2212.07379, arXiv.org.
- Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
- Arun Advani & Toru Kitagawa & Tymon Słoczyński, 2019.
"Mostly harmless simulations? Using Monte Carlo studies for estimator selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 893-910, September.
- Arun Advani & Toru Kitagawa & Tymon S{l}oczy'nski, 2018. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," Papers 1809.09527, arXiv.org, revised Apr 2019.
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," CAGE Online Working Paper Series 411, Competitive Advantage in the Global Economy (CAGE).
- Advani, Arun & Kitagawa, Toru & Słoczyński, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," The Warwick Economics Research Paper Series (TWERPS) 1192, University of Warwick, Department of Economics.
- Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010.
"How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score,"
IZA Discussion Papers
5268, Institute of Labor Economics (IZA).
- Martin Huber & Michael Lechner & Conny Wunsch, 2010. "How to control for many covariates? Reliable estimators based on the propensity score," University of St. Gallen Department of Economics working paper series 2010 2010-30, Department of Economics, University of St. Gallen.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019.
"Specification tests for the propensity score,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
- Pedro H. C. Sant'Anna & Xiaojun Song, 2016. "Specification Tests for the Propensity Score," Papers 1611.06217, arXiv.org, revised Feb 2019.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Martin Huber & Michael Lechner & Andreas Steinmayr, 2015.
"Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour,"
Empirical Economics, Springer, vol. 49(1), pages 1-31, August.
- Huber, Martin & Lechner, Michael & Steinmayr, Andreas, 2012. "Radius matching on the propensity score with bias adjustment: finite sample behaviour, tuning parameters and software implementation," Economics Working Paper Series 1226, University of St. Gallen, School of Economics and Political Science.
- Steven Lehrer & Gregory Kordas, 2013.
"Matching using semiparametric propensity scores,"
Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
- Steven Lehrer & Gregory Kordas, 2004. "Matching using Semiparametric Propensity Scores," Econometric Society 2004 North American Summer Meetings 441, Econometric Society.
- Seonho Shin, 2022. "Evaluating the Effect of the Matching Grant Program for Refugees: An Observational Study Using Matching, Weighting, and the Mantel-Haenszel Test," Journal of Labor Research, Springer, vol. 43(1), pages 103-133, March.
- Carlos A. Flores & Oscar A. Mitnik, 2009.
"Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data,"
Working Papers
2010-10, University of Miami, Department of Economics.
- Flores, Carlos A. & Mitnik, Oscar A., 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," IZA Discussion Papers 4451, Institute of Labor Economics (IZA).
- Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-9, University of Miami, Department of Economics.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
- Michael Lechner & Anthony Strittmatter, 2019.
"Practical procedures to deal with common support problems in matching estimation,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
- Lechner, Michael & Strittmatter, Anthony, 2014. "Practical Procedures to Deal with Common Support Problems in Matching Estimation," Economics Working Paper Series 1410, University of St. Gallen, School of Economics and Political Science.
- Lechner, Michael & Strittmatter, Anthony, 2017. "Practical Procedures to Deal with Common Support Problems in Matching Estimation," IZA Discussion Papers 10532, Institute of Labor Economics (IZA).
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
- Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
More about this item
Keywords
treatment effects; policy evaluation; simulation; empirical Monte Carlo study; propensity score; semi- and nonparametric estimation;All these keywords.
JEL classification:
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2015-02-11 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp8756. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.