IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i3p679-694.html
   My bibliography  Save this article

Improving the efficiency of the log-rank test using auxiliary covariates

Author

Listed:
  • Xiaomin Lu
  • Anastasios A. Tsiatis

Abstract

Under the assumption of proportional hazards, the log-rank test is optimal for testing the null hypothesis , where denotes the logarithm of the hazard ratio. However, if there are additional covariates that correlate with survival times, making use of their information will increase the efficiency of the log-rank test. We apply the theory of semiparametrics to characterize a class of regular and asymptotically linear estimators for when auxiliary covariates are incorporated into the model, and derive estimators that are more efficient. The Wald tests induced by these estimators are shown to be more powerful than the log-rank test. Simulation studies are used to illustrate the gains in efficiency. Copyright 2008, Oxford University Press.

Suggested Citation

  • Xiaomin Lu & Anastasios A. Tsiatis, 2008. "Improving the efficiency of the log-rank test using auxiliary covariates," Biometrika, Biometrika Trust, vol. 95(3), pages 679-694.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:679-694
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn003
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Layla Parast & Beth Ann Griffin, 2017. "Landmark estimation of survival and treatment effects in observational studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 161-182, April.
    2. Ritesh Ramchandani & Dianne M. Finkelstein & David A. Schoenfeld, 2020. "Estimation for an accelerated failure time model with intermediate states as auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 1-20, January.
    3. Michal Juraska & Peter B. Gilbert, 2016. "Mark-specific hazard ratio model with missing multivariate marks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 606-625, October.
    4. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    5. Yuan, Ao & Zheng, Yanxun & Huang, Peng & Tan, Ming T., 2016. "A nonparametric test for the evaluation of group sequential clinical trials with covariate information," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 82-99.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:679-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.