IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i3d10.1007_s10985-021-09519-3.html
   My bibliography  Save this article

The semiparametric accelerated trend-renewal process for recurrent event data

Author

Listed:
  • Chien-Lin Su

    (McGill University
    McGill University)

  • Russell J. Steele

    (McGill University)

  • Ian Shrier

    (McGill University)

Abstract

Recurrent event data arise in many biomedical longitudinal studies when health-related events can occur repeatedly for each subject during the follow-up time. In this article, we examine the gap times between recurrent events. We propose a new semiparametric accelerated gap time model based on the trend-renewal process which contains trend and renewal components that allow for the intensity function to vary between successive events. We use the Buckley–James imputation approach to deal with censored transformed gap times. The proposed estimators are shown to be consistent and asymptotically normal. Model diagnostic plots of residuals and a method for predicting number of recurrent events given specified covariates and follow-up time are also presented. Simulation studies are conducted to assess finite sample performance of the proposed method. The proposed technique is demonstrated through an application to two real data sets.

Suggested Citation

  • Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:3:d:10.1007_s10985-021-09519-3
    DOI: 10.1007/s10985-021-09519-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-021-09519-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-021-09519-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert L. Strawderman, 2005. "The accelerated gap times model," Biometrika, Biometrika Trust, vol. 92(3), pages 647-666, September.
    2. Yining Ye & John D. Kalbfleisch & Douglas E. Schaubel, 2007. "Semiparametric Analysis of Correlated Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 63(1), pages 78-87, March.
    3. Guosheng Yin & Jianwen Cai, 2005. "Quantile Regression Models with Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 61(1), pages 151-161, March.
    4. Heggland, Knut & Lindqvist, Bo H., 2007. "A non-parametric monotone maximum likelihood estimator of time trend for repairable system data," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 575-584.
    5. Kang, Fangyuan & Sun, Liuquan & Zhao, Xingqiu, 2015. "A class of transformed hazards models for recurrent gap times," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 151-167.
    6. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    7. Ying, Z. & Wei, L. J., 1994. "The Kaplan-Meier Estimate for Dependent Failure Time Observations," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 17-29, July.
    8. Varadhan, Ravi & Gilbert, Paul, 2009. "BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i04).
    9. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
    10. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    11. Strawderman Robert L, 2006. "A Regression Model for Dependent Gap Times," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-34, January.
    12. Rondeau, Virginie & Marzroui, Yassin & Gonzalez, Juan R., 2012. "frailtypack: An R Package for the Analysis of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or Parametrical Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i04).
    13. Wei Pan, 2001. "A Multiple Imputation Approach to Regression Analysis for Doubly Censored Data with Application to AIDS Studies," Biometrics, The International Biometric Society, vol. 57(4), pages 1245-1250, December.
    14. Cook, Richard J. & Lawless, Jerald F. & Lakhal-Chaieb, Lajmi & Lee, Ker-Ai, 2009. "Robust Estimation of Mean Functions and Treatment Effects for Recurrent Events Under Event-Dependent Censoring and Termination: Application to Skeletal Complications in Cancer Metastatic to Bone," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 60-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    2. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    3. Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.
    4. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    5. Xingqiu Zhao & Jie Zhou & Liuquan Sun, 2011. "Semiparametric Transformation Models with Time-Varying Coefficients for Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 67(2), pages 404-414, June.
    6. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    7. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    8. Kang Fang Yuan, 2018. "The Model and the Inference for the Clustered Recurrent Event," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(4), pages 106-107, February.
    9. Jieli Ding & Liuquan Sun, 2017. "Additive mixed effect model for recurrent gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 223-253, April.
    10. Per Kragh Andersen & Jules Angst & Henrik Ravn, 2019. "Modeling marginal features in studies of recurrent events in the presence of a terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 681-695, October.
    11. P. G. Sankaran & P. Anisha, 2011. "Shared frailty model for recurrent event data with multiple causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2859-2868, February.
    12. Xiaoyu Che & John Angus, 2016. "A new joint model of recurrent event data with the additive hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 763-787, October.
    13. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    14. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    15. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    16. Sankaran, P.G. & Anisha, P., 2012. "Additive hazards models for gap time data with multiple causes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1454-1462.
    17. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    18. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    19. Taoufik Bouezmarni & Jeroen Rombouts, 2008. "Density and hazard rate estimation for censored and α-mixing data using gamma kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 627-643.
    20. Xiaoyan Sun & Limin Peng & Yijian Huang & HuiChuan J. Lai, 2016. "Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 145-156, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:3:d:10.1007_s10985-021-09519-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.