IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i3p647-666.html
   My bibliography  Save this article

The accelerated gap times model

Author

Listed:
  • Robert L. Strawderman

Abstract

This paper develops a new semiparametric model for the effect of covariates on the conditional intensity of a recurrent event counting process. The model is a transparent extension of the accelerated failure time model for univariate survival data. Estimation of the regression parameter is motivated by semiparametric efficiency considerations, extending the class of weighted log-rank estimating functions originally proposed in Prentice (1978) and subsequently studied in detail by Tsiatis (1990) and Ritov (1990). A novel rank-based one-step estimator for the regression parameter is proposed. An Aalen-type estimator for the baseline intensity function is obtained. Asymptotics are handled with empirical process methods, and finite sample properties are studied via simulation. Finally, the new model is applied to the bladder tumour data of Byar (1980). Copyright 2005, Oxford University Press.

Suggested Citation

  • Robert L. Strawderman, 2005. "The accelerated gap times model," Biometrika, Biometrika Trust, vol. 92(3), pages 647-666, September.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:3:p:647-666
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.3.647
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianghua Luo & Chiung-Yu Huang & Lan Wang, 2013. "Quantile Regression for Recurrent Gap Time Data," Biometrics, The International Biometric Society, vol. 69(2), pages 375-385, June.
    2. Jieli Ding & Liuquan Sun, 2017. "Additive mixed effect model for recurrent gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 223-253, April.
    3. V. N. Sreeja & P. G. Sankaran, 2007. "Proportional mean residual life model for gap time distributions of recurrent events," Metron - International Journal of Statistics, Dipartimento di Statistica, ProbabilitĂ  e Statistiche Applicate - University of Rome, vol. 0(3), pages 319-336.
    4. Kang, Fangyuan & Sun, Liuquan & Zhao, Xingqiu, 2015. "A class of transformed hazards models for recurrent gap times," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 151-167.
    5. Xu Shu & Douglas E. Schaubel, 2017. "Methods for Contrasting Gap Time Hazard Functions: Application to Repeat Liver Transplantation," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 470-488, December.
    6. Kang Fang Yuan, 2018. "The Model and the Inference for the Clustered Recurrent Event," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(4), pages 106-107, February.
    7. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
    8. Pang Du & Yihua Jiang & Yuedong Wang, 2011. "Smoothing Spline ANOVA Frailty Model for Recurrent Event Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1330-1339, December.
    9. Jie Fan & Somnath Datta, 2013. "On Mann–Whitney tests for comparing sojourn time distributions when the transition times are right censored," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 149-166, February.
    10. Sankaran, P.G. & Anisha, P., 2012. "Additive hazards models for gap time data with multiple causes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1454-1462.
    11. Fengchang Lin & Jason P. Fine, 2009. "Pseudomartingale estimating equations for modulated renewal process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 3-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:3:p:647-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.