IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v79y2016i7d10.1007_s00184-016-0577-9.html
   My bibliography  Save this article

A new joint model of recurrent event data with the additive hazards model for the terminal event time

Author

Listed:
  • Xiaoyu Che

    (Columbia University)

  • John Angus

    (Claremont Graduate University)

Abstract

Recurrent event data are frequently encountered in clinical and observational studies related to biomedical science, econometrics, reliability and demography. In some situations, recurrent events serve as important indicators for evaluating disease progression, health deterioration, or insurance risk. In statistical literature, non informative censoring is typically assumed when statistical methods and theories are developed for analyzing recurrent event data. In many applications, however, there may exist a terminal event, such as death, that stops the follow-up, and it is the correlation of this terminal event with the recurrent event process that is of interest. This work considers joint modeling and analysis of recurrent event and terminal event data, with the focus primarily on determining how the terminal event process and the recurrent event process are correlated (i.e. does the frequency of the recurrent event influence the risk of the terminal event). We propose a joint model of the recurrent event process and the terminal event, linked through a common subject-specific latent variable, in which the proportional intensity model is used for modeling the recurrent event process and the additive hazards model is used for modeling the terminal event time.

Suggested Citation

  • Xiaoyu Che & John Angus, 2016. "A new joint model of recurrent event data with the additive hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(7), pages 763-787, October.
  • Handle: RePEc:spr:metrik:v:79:y:2016:i:7:d:10.1007_s00184-016-0577-9
    DOI: 10.1007/s00184-016-0577-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-016-0577-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-016-0577-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    2. Donglin Zeng & D. Y. Lin, 2009. "Semiparametric Transformation Models with Random Effects for Joint Analysis of Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 65(3), pages 746-752, September.
    3. Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.
    4. Donglin Zeng & Jianwen Cai, 2010. "A semiparametric additive rate model for recurrent events with an informative terminal event," Biometrika, Biometrika Trust, vol. 97(3), pages 699-712.
    5. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    6. Wang M-C. & Qin J. & Chiang C-T., 2001. "Analyzing Recurrent Event Data With Informative Censoring," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1057-1065, September.
    7. Zeng, Donglin & Lin, D.Y., 2007. "Semiparametric Transformation Models With Random Effects for Recurrent Events," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 167-180, March.
    8. Lin H. & Turnbull B. W. & McCulloch C. E. & Slate E. H., 2002. "Latent Class Models for Joint Analysis of Longitudinal Biomarker and Event Process Data: Application to Longitudinal Prostate-Specific Antigen Readings and Prostate Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 53-65, March.
    9. Yining Ye & John D. Kalbfleisch & Douglas E. Schaubel, 2007. "Semiparametric Analysis of Correlated Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 63(1), pages 78-87, March.
    10. Debashis Ghosh & D. Y. Lin, 2000. "Nonparametric Analysis of Recurrent Events and Death," Biometrics, The International Biometric Society, vol. 56(2), pages 554-562, June.
    11. Chiung-Yu Huang & Mei-Cheng Wang, 2004. "Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1153-1165, December.
    12. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    13. Maja Miloslavsky & Sündüz Keleş & Mark J. van der Laan & Steve Butler, 2004. "Recurrent events analysis in the presence of time‐dependent covariates and dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 239-257, February.
    14. Lin D Y & Ying Z, 2001. "Semiparametric and Nonparametric Regression Analysis of Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 103-126, March.
    15. Lin D Y & Wei L J & Ying Z, 2001. "Semiparametric Transformation Models for Point Processes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 620-628, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuying & Wang, Chunjie & Wang, Peijie & Sun, Jianguo, 2018. "Semiparametric analysis of the additive hazards model with informatively interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    2. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    3. Xingqiu Zhao & Jie Zhou & Liuquan Sun, 2011. "Semiparametric Transformation Models with Time-Varying Coefficients for Recurrent and Terminal Events," Biometrics, The International Biometric Society, vol. 67(2), pages 404-414, June.
    4. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    5. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    6. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    7. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    8. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    9. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    10. P. G. Sankaran & P. Anisha, 2011. "Shared frailty model for recurrent event data with multiple causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2859-2868, February.
    11. Hui Zhao & Yang Li & Jianguo Sun, 2013. "Semiparametric analysis of multivariate panel count data with dependent observation processes and a terminal event," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 379-394, June.
    12. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    13. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    14. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    15. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    16. Sehee Kim & Douglas E. Schaubel & Keith P. McCullough, 2018. "A C†index for recurrent event data: Application to hospitalizations among dialysis patients," Biometrics, The International Biometric Society, vol. 74(2), pages 734-743, June.
    17. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    18. Yifei Sun & Mei-Cheng Wang, 2017. "Evaluating Utility Measurement From Recurrent Marker Processes in the Presence of Competing Terminal Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 745-756, April.
    19. Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
    20. Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:79:y:2016:i:7:d:10.1007_s00184-016-0577-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.