IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v50y1994i1p17-29.html
   My bibliography  Save this article

The Kaplan-Meier Estimate for Dependent Failure Time Observations

Author

Listed:
  • Ying, Z.
  • Wei, L. J.

Abstract

In some long term medical follow-up studies, a series of dependent and possibly censored failure times may be observed. Suppose that these failure times were generated from the same distribution function, and inferences about it are of our main interest. In this article, we show that under rather weak conditions for the dependence among the observations, the Kaplan-Meier estimator is still consistent and asymptotically normal. For a special dependent case in which highly stratified data are observed, a valid estimate for the limiting variance of the Kaplan-Meier estimate is also provided. Our proposal is illustrated with an examply.

Suggested Citation

  • Ying, Z. & Wei, L. J., 1994. "The Kaplan-Meier Estimate for Dependent Failure Time Observations," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 17-29, July.
  • Handle: RePEc:eee:jmvana:v:50:y:1994:i:1:p:17-29
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(84)71031-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roussas, George G., 2000. "Asymptotic normality of the kernel estimate of a probability density function under association," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 1-12, October.
    2. Yinxiao Huang & Stanislav Volgushev & Xiaofeng Shao, 2015. "On Self-Normalization For Censored Dependent Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 109-124, January.
    3. R. Dhanya Nair & E. I. Abdul Sathar, 2024. "Nonparametric estimation of extropy based measures under right censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2374-2382, June.
    4. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    5. Emura, Takeshi & Kao, Fan-Hsuan & Michimae, Hirofumi, 2014. "An improved nonparametric estimator of sub-distribution function for bivariate competing risk models," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 229-241.
    6. Nilanjan Chatterjee & Joanna Shih, 2001. "A Bivariate Cure-Mixture Approach for Modeling Familial Association in Diseases," Biometrics, The International Biometric Society, vol. 57(3), pages 779-786, September.
    7. Wei Pan & Thomas A. Louis, 2000. "A Linear Mixed-Effects Model for Multivariate Censored Data," Biometrics, The International Biometric Society, vol. 56(1), pages 160-166, March.
    8. Cai, Zongwu, 1998. "Asymptotic properties of Kaplan-Meier estimator for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 381-389, March.
    9. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
    10. Bernard Rosner & Camden Bay & Robert J. Glynn & Gui-shuang Ying & Maureen G. Maguire & Mei-Ling Ting Lee, 2023. "Estimation and testing for clustered interval-censored bivariate survival data with application using the semi-parametric version of the Clayton–Oakes model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 854-887, October.
    11. Guosheng Yin & Jianwen Cai, 2005. "Quantile Regression Models with Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 61(1), pages 151-161, March.
    12. Taoufik Bouezmarni & Jeroen Rombouts, 2008. "Density and hazard rate estimation for censored and α-mixing data using gamma kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 627-643.
    13. Nour El Houda Rouabah & Nahima Nemouchi & Fatiha Messaci, 2019. "A rate of consistency for nonparametric estimators of the distribution function based on censored dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 259-280, June.
    14. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:50:y:1994:i:1:p:17-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.