IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i5p575-584.html
   My bibliography  Save this article

A non-parametric monotone maximum likelihood estimator of time trend for repairable system data

Author

Listed:
  • Heggland, Knut
  • Lindqvist, Bo H.

Abstract

The trend-renewal process (TRP) is defined to be a time-transformed renewal process, where the time transformation is given by a trend function λ(·) which is similar to the intensity of a non-homogeneous Poisson process (NHPP). A non-parametric maximum likelihood estimator of the trend function of a TRP is obtained under the often natural condition that λ(·) is monotone. An algorithm for computing the estimate is suggested and examined in detail in the case where the renewal distribution of the TRP is a Weibull distribution. The case where one has data from several systems is also briefly studied.

Suggested Citation

  • Heggland, Knut & Lindqvist, Bo H., 2007. "A non-parametric monotone maximum likelihood estimator of time trend for repairable system data," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 575-584.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:5:p:575-584
    DOI: 10.1016/j.ress.2006.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006001177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amer Ibrahim Al-Omari & Amjad D. Al-Nasser & Enrico Ciavolino, 2019. "A size-biased Ishita distribution and application to real data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 493-512, January.
    2. Badía, Francisco German & Sangüesa, Carmen & Cha, Ji Hwan, 2018. "Stochastic comparisons and multivariate dependence for the epoch times of trend renewal processes," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 174-184.
    3. Gámiz, Maria Luz & Lindqvist, Bo Henry, 2016. "Nonparametric estimation in trend-renewal processes," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 38-46.
    4. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    2. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    3. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    4. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    5. Raouf, BOUCEKKINE & Blanca, MARTINEZ & Cagri, SAGLAM, 2006. "Capital Maintenance Vs Technology Adopton under Embodied Technical Progress," Discussion Papers (ECON - Département des Sciences Economiques) 2006030, Université catholique de Louvain, Département des Sciences Economiques.
    6. Dewan, Isha & Dijoux, Yann, 2015. "Modelling repairable systems with an early life under competing risks and asymmetric virtual age," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 215-224.
    7. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    8. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    9. Jackson, Canek & Pascual, Rodrigo, 2008. "Optimal maintenance service contract negotiation with aging equipment," European Journal of Operational Research, Elsevier, vol. 189(2), pages 387-398, September.
    10. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    11. Wang, Ling & Xu, Hong & Yuan, Hua & Zhao, Wenjie & Chen, Xiai, 2015. "Optimizing the re-profiling strategy of metro wheels based on a data-driven wear model," European Journal of Operational Research, Elsevier, vol. 242(3), pages 975-986.
    12. Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
    13. Kurt, Murat & Kharoufeh, Jeffrey P., 2010. "Optimally maintaining a Markovian deteriorating system with limited imperfect repairs," European Journal of Operational Research, Elsevier, vol. 205(2), pages 368-380, September.
    14. Rajiv N Rai & Nomesh Bolia, 2014. "Availability-based optimal maintenance policies for repairable systems in military aviation by identification of dominant failure modes," Journal of Risk and Reliability, , vol. 228(1), pages 52-61, February.
    15. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    16. Flage, Roger, 2014. "A delay time model with imperfect and failure-inducing inspections," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 1-12.
    17. Mitra, Amitava, 2021. "Warranty parameters for extended two-dimensional warranties incorporating consumer preferences," European Journal of Operational Research, Elsevier, vol. 291(2), pages 525-535.
    18. Richard Arnold & Stefanka Chukova & Yu Hayakawa & Sarah Marshall, 2019. "Warranty cost analysis with an alternating geometric process," Journal of Risk and Reliability, , vol. 233(4), pages 698-715, August.
    19. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    20. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:5:p:575-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.