IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v7y2022i1d10.1186_s41072-022-00124-7.html
   My bibliography  Save this article

Maritime fuels of the future: what is the impact of alternative fuels on the optimal economic speed of large container vessels

Author

Listed:
  • Konstantinos Kouzelis

    (Delft University of Technology)

  • Koos Frouws

    (Delft University of Technology)

  • Edwin Hassel

    (University of Antwerp)

Abstract

This study aims to determine the most appropriate alternative fuel technology to comply with possible different imposed emission regulations while ensuring optimal business performance. In this context, the most suitable alternative fuel technology minimizes the required freight rate while maximizing overall performance on technological, environmental, and other criteria. A decision support tool was developed combining the overall performance of alternative fuels based on technological, environmental, and other criteria via a simple multiattribute rating technique model with a financial model based on discounted cash flow analysis. In this model, also an optimization model is implemented to minimize the required freight rate by optimizing for economic vessel speed. This model provides quantified insights into the financial and operational effects of transitioning via either a 'market-based measure' regulatory scenario or an 'emission cap' scenario if current fuels do not reach the zero-emission targets in the future. Based on the analysis, it can be concluded that upgraded bio-oil, Fischer–Tropsch diesel and liquefied bio-methane can be considered the 'most promising' alternative maritime fuels of the future. Current fuels such as Heavy fuel oil and Liquified natural gas remain the 'most probable' to retain dominance without regulations. If there is a transition toward these alternative fuels, this will also lead to a shift toward lower sailing speeds.

Suggested Citation

  • Konstantinos Kouzelis & Koos Frouws & Edwin Hassel, 2022. "Maritime fuels of the future: what is the impact of alternative fuels on the optimal economic speed of large container vessels," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-29, December.
  • Handle: RePEc:spr:josatr:v:7:y:2022:i:1:d:10.1186_s41072-022-00124-7
    DOI: 10.1186/s41072-022-00124-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-022-00124-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-022-00124-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingbo Yin & Lixian Fan & Zhongzhen Yang & Kevin X. Li, 2014. "Slow steaming of liner trade: its economic and environmental impacts," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(2), pages 149-158, March.
    2. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
    3. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    4. Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
    5. Michael Maloni & Jomon Aliyas Paul & David M Gligor, 2013. "Slow steaming impacts on ocean carriers and shippers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(2), pages 151-171, June.
    6. Seyed Abolfazl Mohseni & Edwin van Hassel & Christa Sys & Thierry Vanelslander, 2019. "Economic evaluation of alternative technologies to mitigate Sulphur emissions in maritime container transport from both the vessel owner and shipper perspective," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesper Zwaginga & Benjamin Lagemann & Stein Ove Erikstad & Jeroen Pruyn, 2024. "Optimal Ship Fuel Selection under Life Cycle Uncertainty," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    2. Alam Md Moshiul & Roslina Mohammad & Fariha Anjum Hira, 2023. "Alternative Fuel Selection Framework toward Decarbonizing Maritime Deep-Sea Shipping," Sustainability, MDPI, vol. 15(6), pages 1-37, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    2. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    3. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    4. Mallidis, Ioannis & Iakovou, Eleftherios & Dekker, Rommert & Vlachos, Dimitrios, 2018. "The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 18-39.
    5. Riccardo Giusti & Daniele Manerba & Roberto Tadei, 2021. "Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    6. Peter Andersson & Pernilla Ivehammar, 2017. "Dynamic route planning in the Baltic Sea Region – A cost-benefit analysis based on AIS data," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 631-649, December.
    7. Halff, Antoine & Younes, Lara & Boersma, Tim, 2019. "The likely implications of the new IMO standards on the shipping industry," Energy Policy, Elsevier, vol. 126(C), pages 277-286.
    8. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    9. Zheng, Wei & Li, Bo & Song, Dongping, 2022. "The optimal green strategies for competitive ocean carriers under potential regulation," European Journal of Operational Research, Elsevier, vol. 303(2), pages 840-856.
    10. Dai, Wayne Lei & Fu, Xiaowen & Yip, Tsz Leung & Hu, Hao & Wang, Kun, 2018. "Emission charge and liner shipping network configuration – An economic investigation of the Asia-Europe route," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 291-305.
    11. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    12. Seyedvahid Vakili & Fabio Ballini & Alessandro Schönborn & Anastasia Christodoulou & Dimitrios Dalaklis & Aykut I. Ölçer, 2023. "Assessing the macroeconomic and social impacts of slow steaming in shipping: a literature review on small island developing states and least developed countries," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-25, December.
    13. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Wu, Nianyuan & Zhang, Fang & Zhang, Fuzheng & Jiang, Chenxing & Lin, Jian & Xie, Shan & Jing, Rui & Zhao, Yingru, 2024. "An integrated multi-objective optimization, evaluation, and decision-making method for ship energy system," Applied Energy, Elsevier, vol. 373(C).
    15. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    16. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    17. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    18. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    19. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    20. Tran, Nguyen Khoi & Haasis, Hans-Dietrich, 2015. "An empirical study of fleet expansion and growth of ship size in container liner shipping," International Journal of Production Economics, Elsevier, vol. 159(C), pages 241-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:7:y:2022:i:1:d:10.1186_s41072-022-00124-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.