IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v4y2019i1d10.1186_s41072-019-0051-8.html
   My bibliography  Save this article

Economic evaluation of alternative technologies to mitigate Sulphur emissions in maritime container transport from both the vessel owner and shipper perspective

Author

Listed:
  • Seyed Abolfazl Mohseni

    (University of Antwerp)

  • Edwin van Hassel

    (University of Antwerp)

  • Christa Sys

    (University of Antwerp)

  • Thierry Vanelslander

    (University of Antwerp)

Abstract

International maritime shipping is confronted from 2006 onwards with regulation until 2030 by different policy actors (i.e. International Maritime Organization, hereafter IMO), the EU) in order to improve the ecological performance of maritime shipping, and will face more so in the future. Many of these regulations concern the reduction of air pollution of vessels both globally and in particular in so-called Emission Control Areas (ECA’s). In this research, the economic impact of alternative technologies in order to reduce the Sulphur emissions in existing ECA zones is analyzed both from the perspective of the vessel owner, as well as for the evaluation of generalized chain cost, hence from the shipper point of view. The container carriers can choose different methods to comply with the new regulations, such as switching fuel types (Liquefied Natural Gas (LNG), Marine Diesel Oil (MDO)) or opting for innovative technologies like installing scrubber systems. The goal of this research is twofold: first, to discover alternative available technologies to mitigate Sulphur emissions according to the literature; second, to evaluate economically the selected technologies both from vessel owners and shippers perspectives. In order to study this, an update of an existing model is used. The added value of the extended model is threefold: calculating the generalized chain cost of transporting a container from the origin (US and Asia) to a destination in the EU, incorporating in the model the different ECA zones in the world and integrating more detailed fuel cost calculations and capital cost for different engine types or technologies used. The methodology used in this research is an extension of an existing model which is updated for the purpose of this research. This update includes a new functionality to allow calculating the vessel owner cost for different fuel types and propulsion systems (Heavy Fuel Oil or HFO, MDO and LNG). Next to that, more maritime distance data is collected containing the distance sailed in ECA zones. This means that for each port-to-port combination, in the total maritime distance database in the model, this additional information is added. Based on this information, the fuel cost can be calculated when a vessel is sailing in ECA zones using either MDO, LNG or HFO (including a scrubber). The research is particularly interesting for logistics operators, legislation regulators and academia. The extended model allows calculating the best economic solutions for selected routes. For logistics operators and in particular for shippers, the results allow making the most rewarding investments from an economic point of view and affirm the importance of different technologies on the generalized chain cost. The results indicate that the price of the different fuels (and the spread between them) displays an important factor in the overall outcome.

Suggested Citation

  • Seyed Abolfazl Mohseni & Edwin van Hassel & Christa Sys & Thierry Vanelslander, 2019. "Economic evaluation of alternative technologies to mitigate Sulphur emissions in maritime container transport from both the vessel owner and shipper perspective," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-27, December.
  • Handle: RePEc:spr:josatr:v:4:y:2019:i:1:d:10.1186_s41072-019-0051-8
    DOI: 10.1186/s41072-019-0051-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-019-0051-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-019-0051-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shun Chen & Shiyuan Zheng & Qiang Zhang, 2018. "Investment decisions under uncertainty on LNG-powered vessels for environmental compliance," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-19, December.
    2. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    3. Raimonds Aronietis & Christa Sys & Edwin van Hassel & Thierry Vanelslander, 2017. "Investigating the bunkering choice determinants: the case of the port of Antwerp," Journal of Shipping and Trade, Springer, vol. 2(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Konstantinos Kouzelis & Koos Frouws & Edwin Hassel, 2022. "Maritime fuels of the future: what is the impact of alternative fuels on the optimal economic speed of large container vessels," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Hyunjun & Lee, Sanghuk & Jeong, Jinyeong & Chang, Daejun, 2018. "Design of the compressor-assisted LNG fuel gas supply system," Energy, Elsevier, vol. 158(C), pages 1017-1027.
    2. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    3. Rasoulinezhad, Ehsan & Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki & Sarker, Tapan, 2019. "Russian Federation–East Asia Liquefied Natural Gas Trade Patterns and Regional Energy Security," ADBI Working Papers 965, Asian Development Bank Institute.
    4. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    5. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Kian-Guan Lim & Michelle Lim, 2020. "Financial performance of shipping firms that increase LNG carriers and the support of eco-innovation," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-25, December.
    7. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    8. Ilnytskyy Denys & Zinchenko Sergii & Savych Oleksandr & Yanchetskyy Oleksandr, 2018. "Analysis of seaports development strategies: science, technology, education and marketing," Technology audit and production reserves, 3(41) 2018, Socionet;Technology audit and production reserves, vol. 3(4(41)), pages 10-24.
    9. Grusche J. Seithe & Alexandra Bonou & Dimitrios Giannopoulos & Chariklia A. Georgopoulou & Maria Founti, 2020. "Maritime Transport in a Life Cycle Perspective: How Fuels, Vessel Types, and Operational Profiles Influence Energy Demand and Greenhouse Gas Emissions," Energies, MDPI, vol. 13(11), pages 1-20, May.
    10. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).
    11. Tayfun Uyanık & Yunus Yalman & Özcan Kalenderli & Yasin Arslanoğlu & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Data-Driven Approach for Estimating Power and Fuel Consumption of Ship: A Case of Container Vessel," Mathematics, MDPI, vol. 10(22), pages 1-21, November.
    12. Halff, Antoine & Younes, Lara & Boersma, Tim, 2019. "The likely implications of the new IMO standards on the shipping industry," Energy Policy, Elsevier, vol. 126(C), pages 277-286.
    13. Soon-Kyu Hwang & Byung-Gun Jung, 2021. "A Novel Control Strategy on Stable Operation of Fuel Gas Supply System and Re-Liquefaction System for LNG Carriers," Energies, MDPI, vol. 14(24), pages 1-22, December.
    14. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).
    15. Christer Wik & Seppo Niemi, 2016. "Low emission engine technologies for future tier 3 legislations - options and case studies," Journal of Shipping and Trade, Springer, vol. 1(1), pages 1-22, December.
    16. Brewer, Thomas L., 2019. "Black carbon emissions and regulatory policies in transportation," Energy Policy, Elsevier, vol. 129(C), pages 1047-1055.
    17. Mestemaker, B.T.W. & Goncalves Castro, M.B. & van den Heuvel, H.N. & Visser, K., 2020. "Dynamic simulation of a vessel drive system with dual fuel engines and energy storage," Energy, Elsevier, vol. 194(C).
    18. Tan, Roy & Duru, Okan & Thepsithar, Prapisala, 2020. "Assessment of relative fuel cost for dual fuel marine engines along major Asian container shipping routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    19. Tomas Gil-Lopez & Amparo Verdu-Vazquez, 2021. "Environmental Analysis of the Use of Liquefied Natural Gas in Maritime Transport within the Port Environment," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    20. Kirsi Spoof-Tuomi & Seppo Niemi, 2020. "Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping," Clean Technol., MDPI, vol. 2(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:4:y:2019:i:1:d:10.1186_s41072-019-0051-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.