IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics030626192401300x.html
   My bibliography  Save this article

An integrated multi-objective optimization, evaluation, and decision-making method for ship energy system

Author

Listed:
  • Wu, Nianyuan
  • Zhang, Fang
  • Zhang, Fuzheng
  • Jiang, Chenxing
  • Lin, Jian
  • Xie, Shan
  • Jing, Rui
  • Zhao, Yingru

Abstract

With the rapid development of global shipping industry, the energy conservation and emission reduction issue of ships has received increasing attention from the international community. A series of regulations released by the International Maritime Organization (IMO) have greatly stimulated the related research. However, the mechanism of optimization design and evaluation of marine ship energy system at the whole ship level based on the comprehensive consideration of various performance of ships is still unclear. In the present study, an integrated modeling method of multi-objective optimization and evaluation for ship energy system are proposed to optimize the design of ship energy system. This paper constructs a technical selection, capacity allocation, and operational optimization model for ship energy systems using mixed-integer nonlinear programming (MINLP) method. Based on determining relevant constraints and multiple objective functions, the data envelopment analysis (DEA) method is introduced to evaluate and make decisions on the multi-objective optimization results, and compared with traditional decision-making method. The economic optimization results show that the net present cost of ship energy system can be reduced by 20%, while the NOx, SOx and CO2 emissions of the system are reduced by 41%, 20% and 32%, respectively. Moreover, the energy efficiency of the optimized ship energy system is improved by 9% compared to the conventional ship energy system. In summary, the proposed method can effectively identify the advantages and disadvantages of different solutions, therefore provide more design options of sub-optimal schemes for decision makers.

Suggested Citation

  • Wu, Nianyuan & Zhang, Fang & Zhang, Fuzheng & Jiang, Chenxing & Lin, Jian & Xie, Shan & Jing, Rui & Zhao, Yingru, 2024. "An integrated multi-objective optimization, evaluation, and decision-making method for ship energy system," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s030626192401300x
    DOI: 10.1016/j.apenergy.2024.123917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401300X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    2. Wang, Xin & Li, Zhengwei & Meng, Haixing & Wu, Jiang, 2017. "Identification of key energy efficiency drivers through global city benchmarking: A data driven approach," Applied Energy, Elsevier, vol. 190(C), pages 18-28.
    3. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Li, Qing & Long, Teng, 2018. "A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship," Energy, Elsevier, vol. 165(PA), pages 965-978.
    4. Jing, Rui & Wang, Meng & Liang, Hao & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2018. "Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints," Applied Energy, Elsevier, vol. 231(C), pages 534-548.
    5. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
    6. Christer Wik & Seppo Niemi, 2016. "Low emission engine technologies for future tier 3 legislations - options and case studies," Journal of Shipping and Trade, Springer, vol. 1(1), pages 1-22, December.
    7. Zheng, Xuyue & Qiu, Yuwei & Zhan, Xiangyan & Zhu, Xingyi & Keirstead, James & Shah, Nilay & Zhao, Yingru, 2017. "Optimization based planning of urban energy systems: Retrofitting a Chinese industrial park as a case-study," Energy, Elsevier, vol. 139(C), pages 31-41.
    8. Davoudabadi, Reza & Mousavi, Seyed Meysam & Mohagheghi, Vahid, 2021. "A new decision model based on DEA and simulation to evaluate renewable energy projects under interval-valued intuitionistic fuzzy uncertainty," Renewable Energy, Elsevier, vol. 164(C), pages 1588-1601.
    9. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Wei, Lijiang & Cheng, Rupeng & Mao, Hongjun & Geng, Peng & Zhang, Yanjie & You, Kun, 2018. "Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends," Energy, Elsevier, vol. 144(C), pages 73-80.
    11. Zamani-Sabzi, Hamed & King, James Phillip & Gard, Charlotte C. & Abudu, Shalamu, 2016. "Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment," Operations Research Perspectives, Elsevier, vol. 3(C), pages 92-117.
    12. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    13. Dimopoulos, George G. & Kougioufas, Aristotelis V. & Frangopoulos, Christos A., 2008. "Synthesis, design and operation optimization of a marine energy system," Energy, Elsevier, vol. 33(2), pages 180-188.
    14. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    15. Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
    16. Asad, Usman & Zheng, Ming, 2014. "Exhaust gas recirculation for advanced diesel combustion cycles," Applied Energy, Elsevier, vol. 123(C), pages 242-252.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    4. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    5. Tang, Yujun & Feng, Jinfeng & Wang, Dawei & Zhu, Sipeng & Bai, Shuzhan & Li, Guoxiang, 2024. "Multi-mode operation of a novel dual-pressure steam rankine cycle system recovering multi-grade waste heat from a marine two-stroke engine equipped with the high-pressure exhaust gas recirculation sys," Energy, Elsevier, vol. 301(C).
    6. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.
    8. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    9. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    10. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    11. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    13. Iqbal, Rashid & Liu, Yancheng & Zeng, Yuji & Zhang, Qinjin & Zeeshan, Muhammad, 2024. "Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green m," Renewable Energy, Elsevier, vol. 221(C).
    14. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    15. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    16. Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
    17. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    18. Konstantinos Kouzelis & Koos Frouws & Edwin Hassel, 2022. "Maritime fuels of the future: what is the impact of alternative fuels on the optimal economic speed of large container vessels," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-29, December.
    19. Lion, Simone & Taccani, Rodolfo & Vlaskos, Ioannis & Scrocco, Pietro & Vouvakos, Xenakis & Kaiktsis, Lambros, 2019. "Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation," Energy, Elsevier, vol. 183(C), pages 48-60.
    20. Wang, Meng & Yu, Hang & Yang, Yikun & Lin, Xiaoyu & Guo, Haijin & Li, Chaoen & Zhou, Yue & Jing, Rui, 2021. "Unlocking emerging impacts of carbon tax on integrated energy systems through supply and demand co-optimization," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s030626192401300x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.