IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v41y2014i2p149-158.html
   My bibliography  Save this article

Slow steaming of liner trade: its economic and environmental impacts

Author

Listed:
  • Jingbo Yin
  • Lixian Fan
  • Zhongzhen Yang
  • Kevin X. Li

Abstract

From 2000s, there have been three forces provoking slow steaming practice in the liner industry: (1) oversupply of shipping capacity, (2) increase of bunker price and (3) environmental pressure. This paper analyses the background and the recent application of slow steaming in liner shipping. The research looks into the questions of how slow steaming can save bunker consumption and bring benefits to the environment. On the other hand, solutions are also examined to the adverse side of slow steaming practice, i.e., how it affects the container transit time. For which, a cost model is developed to demonstrate the impact of slow steaming on the revenue change, with application to the North Europe-Far East Trade as a case study. The final result shows that the optimal speed for the shipowner is correlated with the designed speed, bunker price and the price of CO 2 . With the increase of the bunker price and the price of CO 2, the optimal speed will also increase, which means that slow steaming practice has a positive impact on the environmental protection.

Suggested Citation

  • Jingbo Yin & Lixian Fan & Zhongzhen Yang & Kevin X. Li, 2014. "Slow steaming of liner trade: its economic and environmental impacts," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(2), pages 149-158, March.
  • Handle: RePEc:taf:marpmg:v:41:y:2014:i:2:p:149-158
    DOI: 10.1080/03088839.2013.821210
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2013.821210
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2013.821210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Theo E Notteboom, 2006. "The Time Factor in Liner Shipping Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 19-39, March.
    2. Christos Kontovas & Harilaos N. Psaraftis, 2011. "Reduction of emissions along the maritime intermodal container chain: operational models and policies," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(4), pages 451-469, March.
    3. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongyun Yue & John Mangan, 2024. "A framework for understanding reliability in container shipping networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(3), pages 523-544, September.
    2. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    3. Seyedvahid Vakili & Fabio Ballini & Alessandro Schönborn & Anastasia Christodoulou & Dimitrios Dalaklis & Aykut I. Ölçer, 2023. "Assessing the macroeconomic and social impacts of slow steaming in shipping: a literature review on small island developing states and least developed countries," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-25, December.
    4. Peter Andersson & Pernilla Ivehammar, 2017. "Dynamic route planning in the Baltic Sea Region – A cost-benefit analysis based on AIS data," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 631-649, December.
    5. Peng, Wenhao & Bai, Xiwen, 2022. "Prospects for improving shipping companies’ profit margins by quantifying operational strategies and market focus approach through AIS data," Transport Policy, Elsevier, vol. 128(C), pages 138-152.
    6. Lam, Jasmine Siu Lee, 2015. "Designing a sustainable maritime supply chain: A hybrid QFD–ANP approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 70-81.
    7. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    8. Hofmann, Erik & Solakivi, Tomi & Töyli, Juuso & Zinn, Martin, 2018. "Oil price shocks and the financial performance patterns of logistics service providers," Energy Economics, Elsevier, vol. 72(C), pages 290-306.
    9. Heikkilä, Mikko & Grönholm, Tiia & Majamäki, Elisa & Jalkanen, Jukka-Pekka, 2024. "Effect of ice class to vessel fuel consumption based on real-life MRV data," Transport Policy, Elsevier, vol. 148(C), pages 168-180.
    10. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen & Gillen, David, 2017. "Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 99-114.
    11. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    12. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    13. Zhang, Yilin & Zhang, Anming & Wang, Kun & Zheng, Shiyuan & Yang, Hangjun & Hong, Junjie, 2023. "Impact of CR Express and intermodal freight transport competition on China-Europe Route: Emission and welfare implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    14. Mallidis, Ioannis & Iakovou, Eleftherios & Dekker, Rommert & Vlachos, Dimitrios, 2018. "The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 18-39.
    15. Riccardo Giusti & Daniele Manerba & Roberto Tadei, 2021. "Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    16. Dai, Wayne Lei & Fu, Xiaowen & Yip, Tsz Leung & Hu, Hao & Wang, Kun, 2018. "Emission charge and liner shipping network configuration – An economic investigation of the Asia-Europe route," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 291-305.
    17. Konstantinos Kouzelis & Koos Frouws & Edwin Hassel, 2022. "Maritime fuels of the future: what is the impact of alternative fuels on the optimal economic speed of large container vessels," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-29, December.
    18. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    19. Mansouri, S. Afshin & Lee, Habin & Aluko, Oluwakayode, 2015. "Multi-objective decision support to enhance environmental sustainability in maritime shipping: A review and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 3-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Qinghe & Li, Wei & Meng, Qiang, 2024. "Single-leg shipping revenue management for expedited services with ambiguous elasticity in transit-time-sensitive demand," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    2. Finnsgård, Christian & Kalantari, Joakim & Roso, Violeta & Woxenius, Johan, 2020. "The Shipper's perspective on slow steaming - Study of Six Swedish companies," Transport Policy, Elsevier, vol. 86(C), pages 44-49.
    3. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    4. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Containership scheduling with transit-time-sensitive container shipment demand," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 68-83.
    5. He, Qie & Zhang, Xiaochen & Nip, Kameng, 2017. "Speed optimization over a path with heterogeneous arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 198-214.
    6. Xin Wen & Qiong Chen & Yu-Qi Yin & Yui-yip Lau, 2023. "Green Vessel Scheduling with Weather Impact and Emission Control Area Consideration," Mathematics, MDPI, vol. 11(24), pages 1-25, December.
    7. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    8. Thalis P. V. Zis & Harilaos N. Psaraftis, 2022. "Impacts of short-term measures to decarbonize maritime transport on perishable cargoes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 602-629, September.
    9. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Bunker consumption optimization methods in shipping: A critical review and extensions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 49-62.
    10. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.
    11. D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
    12. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    13. Wang, Shuaian & Meng, Qiang, 2013. "Reversing port rotation directions in a container liner shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 61-73.
    14. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen & Gillen, David, 2017. "Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 99-114.
    15. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.
    16. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    17. Christian Va Karsten & Stefan Ropke & David Pisinger, 2018. "Simultaneous Optimization of Container Ship Sailing Speed and Container Routing with Transit Time Restrictions," Transportation Science, INFORMS, vol. 52(4), pages 769-787, August.
    18. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    19. Baştuğ, Sedat & Haralambides, Hercules & Akan, Ercan & Kiraci, Kasim, 2023. "Risk mitigation in service industries: A research agenda on container shipping," Transport Policy, Elsevier, vol. 141(C), pages 232-244.
    20. Wang, Shuaian & Wang, Xinchang, 2016. "A polynomial-time algorithm for sailing speed optimization with containership resource sharing," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 394-405.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:41:y:2014:i:2:p:149-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.