IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v99y1998i2d10.1023_a1021734613201.html
   My bibliography  Save this article

Enumeration Approach for Linear Complementarity Problems Based on a Reformulation-Linearization Technique

Author

Listed:
  • H. D. Sherali

    (Virginia Polytechnic Institute and State University)

  • R. S. Krishnamurthy

    (SABRE Technology Solutions)

  • F. A. Al-Khayyal

    (Georgia Institute of Technology)

Abstract

In this paper, we consider the linear complementarity problem (LCP) and present a global optimization algorithm based on an application of the reformulation-linearization technique (RLT). The matrix M associated with the LCP is not assumed to possess any special structure. In this approach, the LCP is formulated first as a mixed-integer 0–1 bilinear programming problem. The RLT scheme is then used to derive a new equivalent mixed-integer linear programming formulation of the LCP. An implicit enumeration scheme is developed that uses Lagrangian relaxation, strongest surrogate and strengthened cutting planes, and a heuristic, designed to exploit the strength of the resulting linearization. Computational experience on various test problems is presented.

Suggested Citation

  • H. D. Sherali & R. S. Krishnamurthy & F. A. Al-Khayyal, 1998. "Enumeration Approach for Linear Complementarity Problems Based on a Reformulation-Linearization Technique," Journal of Optimization Theory and Applications, Springer, vol. 99(2), pages 481-507, November.
  • Handle: RePEc:spr:joptap:v:99:y:1998:i:2:d:10.1023_a:1021734613201
    DOI: 10.1023/A:1021734613201
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021734613201
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021734613201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
    2. Ronald L. Rardin & V. E. Unger, 1976. "Technical Note—Surrogate Constraints and the Strength of Bounds Derived from 0-1 Benders' Partitioning Procedures," Operations Research, INFORMS, vol. 24(6), pages 1169-1175, December.
    3. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
    2. Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
    3. Trang T. Nguyen & Jean-Philippe P. Richard & Mohit Tawarmalani, 2021. "Convexification techniques for linear complementarity constraints," Journal of Global Optimization, Springer, vol. 80(2), pages 249-286, June.
    4. Hoai Le Thi & Tao Pham Dinh, 2011. "On solving Linear Complementarity Problems by DC programming and DCA," Computational Optimization and Applications, Springer, vol. 50(3), pages 507-524, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. R. Mohan, 1997. "Degeneracy Subgraph of the Lemke Complementary Pivot Algorithm and Anticycling Rule," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 409-423, August.
    2. Thiruvankatachari Parthasarathy & Gomatam Ravindran & Sunil Kumar, 2022. "On Semimonotone Matrices, $$R_0$$ R 0 -Matrices and Q-Matrices," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 131-147, October.
    3. Y. B. Zhao & J. Y. Han & H. D. Qi, 1999. "Exceptional Families and Existence Theorems for Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 101(2), pages 475-495, May.
    4. Ya-nan Zheng & Wei Wu, 2018. "On a Class of Semi-Positive Tensors in Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 127-136, April.
    5. Yisheng Song & Liqun Qi, 2016. "Tensor Complementarity Problem and Semi-positive Tensors," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1069-1078, June.
    6. R. A. Danao, 1997. "On the Parametric Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 445-454, November.
    7. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    8. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    9. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    10. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    11. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    12. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    13. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    14. E. Demidenko, 2008. "Criteria for Unconstrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 375-395, March.
    15. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    16. Zheng, Hua & Vong, Seakweng & Liu, Ling, 2019. "A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 396-405.
    17. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    18. G. Isac & S. Z. Németh, 2008. "REFE-Acceptable Mappings: Necessary and Sufficient Condition for the Nonexistence of a Regular Exceptional Family of Elements," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 507-520, June.
    19. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    20. Songfeng Zheng, 2021. "KLERC: kernel Lagrangian expectile regression calculator," Computational Statistics, Springer, vol. 36(1), pages 283-311, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:99:y:1998:i:2:d:10.1023_a:1021734613201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.