IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v94y1997i2d10.1023_a1022691830468.html
   My bibliography  Save this article

Degeneracy Subgraph of the Lemke Complementary Pivot Algorithm and Anticycling Rule

Author

Listed:
  • S. R. Mohan

    (Delhi Centre)

Abstract

In this paper, we use the theory of degeneracy graphs recently developed by Gal et al. to introduce a graph for studying the adjacency of almost complementary feasible bases, some of which may be degenerate, which are of interest in the context of the linear complementarity problem. We study the structure of this graph with particular reference to the possibility of cycling and various anticycling rules in the Lemke complementary pivoting algorithm. We consider the transition node pivot rule introduced by Geue and show that this rule helps in avoiding cycling in the Lemke complementary pivoting algorithm under a suitable assumption.

Suggested Citation

  • S. R. Mohan, 1997. "Degeneracy Subgraph of the Lemke Complementary Pivot Algorithm and Anticycling Rule," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 409-423, August.
  • Handle: RePEc:spr:joptap:v:94:y:1997:i:2:d:10.1023_a:1022691830468
    DOI: 10.1023/A:1022691830468
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022691830468
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022691830468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    2. B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
    3. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    2. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    3. Rahul Savani & Bernhard von Stengel, 2016. "Unit vector games," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.
    4. Thiruvankatachari Parthasarathy & Gomatam Ravindran & Sunil Kumar, 2022. "On Semimonotone Matrices, $$R_0$$ R 0 -Matrices and Q-Matrices," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 131-147, October.
    5. Y. B. Zhao & J. Y. Han & H. D. Qi, 1999. "Exceptional Families and Existence Theorems for Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 101(2), pages 475-495, May.
    6. Christian Bidard, 2010. "Complementarity Problems and General Equilibrium," Working Papers hal-04140923, HAL.
    7. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Solving Discrete Zero Point Problems with Vector Labeling," Other publications TiSEM 9bd940ee-3fe6-4201-aede-7, Tilburg University, School of Economics and Management.
    8. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
    9. Ya-nan Zheng & Wei Wu, 2018. "On a Class of Semi-Positive Tensors in Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 127-136, April.
    10. Hanna Sumita & Naonori Kakimura & Kazuhisa Makino, 2015. "The Linear Complementarity Problems with a Few Variables per Constraint," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1015-1026, October.
    11. K. Ahmad & K. R. Kazmi & N. Rehman, 1997. "Fixed-Point Technique for Implicit Complementarity Problem in Hilbert Lattice," Journal of Optimization Theory and Applications, Springer, vol. 93(1), pages 67-72, April.
    12. Hanna Sumita & Naonori Kakimura & Kazuhisa Makino, 2019. "Total dual integrality of the linear complementarity problem," Annals of Operations Research, Springer, vol. 274(1), pages 531-553, March.
    13. Richard Cottle, 2010. "A field guide to the matrix classes found in the literature of the linear complementarity problem," Journal of Global Optimization, Springer, vol. 46(4), pages 571-580, April.
    14. Gailly, B. & Installe, M. & Smeers, Y., 2001. "A new resolution method for the parametric linear complementarity problem," European Journal of Operational Research, Elsevier, vol. 128(3), pages 639-646, February.
    15. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
    16. Jugal Garg & Ruta Mehta & Vijay V. Vaziranic, 2018. "Substitution with Satiation: A New Class of Utility Functions and a Complementary Pivot Algorithm," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 996-1024, August.
    17. Yisheng Song & Liqun Qi, 2016. "Tensor Complementarity Problem and Semi-positive Tensors," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1069-1078, June.
    18. Shu-Cherng Fang & Elmor L. Peterson, 1979. "A Unification and Generalization of the Eaves and Kojima Fixed Point Representations of the Complementarity Problem," Discussion Papers 365, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    19. Christian Bidard, 2014. "The Ricardian rent theory two centuries after," Working Papers hal-04141289, HAL.
    20. R. A. Danao, 1997. "On the Parametric Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 445-454, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:94:y:1997:i:2:d:10.1023_a:1022691830468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.