IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v169y2016i3d10.1007_s10957-015-0800-2.html
   My bibliography  Save this article

Tensor Complementarity Problem and Semi-positive Tensors

Author

Listed:
  • Yisheng Song

    (Henan Normal University)

  • Liqun Qi

    (The Hong Kong Polytechnic University)

Abstract

In this paper, we prove that a real tensor is strictly semi-positive if and only if the corresponding tensor complementarity problem has a unique solution for any nonnegative vector and that a real tensor is semi-positive if and only if the corresponding tensor complementarity problem has a unique solution for any positive vector. It is shown that a real symmetric tensor is a (strictly) semi-positive tensor if and only if it is (strictly) copositive.

Suggested Citation

  • Yisheng Song & Liqun Qi, 2016. "Tensor Complementarity Problem and Semi-positive Tensors," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1069-1078, June.
  • Handle: RePEc:spr:joptap:v:169:y:2016:i:3:d:10.1007_s10957-015-0800-2
    DOI: 10.1007/s10957-015-0800-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0800-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0800-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
    2. Yisheng Song & Liqun Qi, 2015. "Properties of Some Classes of Structured Tensors," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 854-873, June.
    3. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya-nan Zheng & Wei Wu, 2018. "On a Class of Semi-Positive Tensors in Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 127-136, April.
    2. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    3. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    4. Vu Trung Hieu, 2020. "Solution maps of polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 77(4), pages 807-824, August.
    5. S. R. Mohan, 1997. "Degeneracy Subgraph of the Lemke Complementary Pivot Algorithm and Anticycling Rule," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 409-423, August.
    6. Thiruvankatachari Parthasarathy & Gomatam Ravindran & Sunil Kumar, 2022. "On Semimonotone Matrices, $$R_0$$ R 0 -Matrices and Q-Matrices," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 131-147, October.
    7. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    8. Y. B. Zhao & J. Y. Han & H. D. Qi, 1999. "Exceptional Families and Existence Theorems for Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 101(2), pages 475-495, May.
    9. Yong Wang & Zheng-Hai Huang & Liqun Qi, 2018. "Global Uniqueness and Solvability of Tensor Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 137-152, April.
    10. Vu Trung Hieu, 2019. "On the R0-Tensors and the Solution Map of Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 163-183, April.
    11. Xuezhong Wang & Maolin Che & Yimin Wei, 2022. "Randomized Kaczmarz methods for tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 595-615, July.
    12. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    13. Maolin Che & Liqun Qi & Yimin Wei, 2016. "Positive-Definite Tensors to Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 475-487, February.
    14. Yang Xu & Guyan Ni & Mengshi Zhang, 2024. "Bounds of the Solution Set to the Polynomial Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 146-164, October.
    15. Xue-Li Bai & Zheng-Hai Huang & Xia Li, 2019. "Stability of Solutions and Continuity of Solution Maps of Tensor Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-19, April.
    16. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    17. R. A. Danao, 1997. "On the Parametric Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 445-454, November.
    18. Ting Zhang & Yong Wang & Zheng-Hai Huang, 2024. "Projected fixed-point method for vertical tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 89(1), pages 219-245, September.
    19. Shouqiang Du & Liping Zhang, 2019. "A mixed integer programming approach to the tensor complementarity problem," Journal of Global Optimization, Springer, vol. 73(4), pages 789-800, April.
    20. K. Palpandi & Sonali Sharma, 2021. "Tensor Complementarity Problems with Finite Solution Sets," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 951-965, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:169:y:2016:i:3:d:10.1007_s10957-015-0800-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.