IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v458y2023ics0096300323004174.html
   My bibliography  Save this article

Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems

Author

Listed:
  • Zhang, Yongxiong
  • Zheng, Hua
  • Lu, Xiaoping
  • Vong, Seakweng

Abstract

In this work, by applying the synchronous multisplitting technique to the non-auxiliary variable modulus equation of the vertical linear complementarity problems, a new parallel method is constructed, which can generalize the existing modulus-based matrix splitting iteration method. The convergence conditions of the proposed method are discussed in the cases of more than two system matrices, and the existing results are improved. Numerical examples under OpenACC framework show that the proposed method can solve the large sparse vertical linear complementarity problems efficiently with high parallel efficiency.

Suggested Citation

  • Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
  • Handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323004174
    DOI: 10.1016/j.amc.2023.128248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323004174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Zechen & Li, Chenliang, 2015. "Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 34-42.
    2. Cuiyu Liu & Chenliang Li, 2016. "Synchronous and Asynchronous Multisplitting Iteration Schemes for Solving Mixed Linear Complementarity Problems with H-Matrices," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 169-185, October.
    3. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Rashid & Akgul, Ali, 2024. "A new matrix splitting generalized iteration method for linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 464(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Hua & Vong, Seakweng & Liu, Ling, 2019. "A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 396-405.
    2. Bharat Kumar & Deepmala & A. Dutta & A. K. Das, 2023. "More on matrix splitting modulus-based iterative methods for solving linear complementarity problem," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1003-1020, June.
    3. Guo, Wenxiu & Zheng, Hua & Lu, Xiaoping & Zhang, Yongxiong, 2024. "On the two-stage multisplitting iteration methods for linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    4. Ping-Fan Dai & Shi-Liang Wu, 2022. "The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 976-1006, December.
    5. Zhang, Yongxiong & Zheng, Hua & Vong, Seakweng & Lu, Xiaoping, 2023. "A two-step parallel iteration method for large sparse horizontal linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    6. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    7. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Discussion Paper 2005-5, Tilburg University, Center for Economic Research.
    8. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    9. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    10. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    11. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    12. Baohua Huang & Wen Li, 2023. "A smoothing Newton method based on the modulus equation for a class of weakly nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 86(1), pages 345-381, September.
    13. E. Demidenko, 2008. "Criteria for Unconstrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 375-395, March.
    14. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    15. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    16. G. Isac & S. Z. Németh, 2008. "REFE-Acceptable Mappings: Necessary and Sufficient Condition for the Nonexistence of a Regular Exceptional Family of Elements," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 507-520, June.
    17. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    18. Songfeng Zheng, 2021. "KLERC: kernel Lagrangian expectile regression calculator," Computational Statistics, Springer, vol. 36(1), pages 283-311, March.
    19. S A Gabriel & Y Shim & A J Conejo & S de la Torre & R García-Bertrand, 2010. "A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1404-1419, September.
    20. Rahul Savani & Bernhard von Stengel, 2016. "Unit vector games," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323004174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.