IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v163y2014i3d10.1007_s10957-014-0549-z.html
   My bibliography  Save this article

Minimal Zero Norm Solutions of Linear Complementarity Problems

Author

Listed:
  • Meijuan Shang

    (Beijing Jiaotong University
    Shijiazhuang University)

  • Chao Zhang

    (Beijing Jiaotong University)

  • Naihua Xiu

    (Beijing Jiaotong University)

Abstract

In this paper, we study minimal zero norm solutions of the linear complementarity problems, defined as the solutions with smallest cardinality. Minimal zero norm solutions are often desired in some real applications such as bimatrix game and portfolio selection. We first show the uniqueness of the minimal zero norm solution for Z-matrix linear complementarity problems. To find minimal zero norm solutions is equivalent to solve a difficult zero norm minimization problem with linear complementarity constraints. We then propose a p norm regularized minimization model with p in the open interval from zero to one, and show that it can approximate minimal zero norm solutions very well by sequentially decreasing the regularization parameter. We establish a threshold lower bound for any nonzero entry in its local minimizers, that can be used to identify zero entries precisely in computed solutions. We also consider the choice of regularization parameter to get desired sparsity. Based on the theoretical results, we design a sequential smoothing gradient method to solve the model. Numerical results demonstrate that the sequential smoothing gradient method can effectively solve the regularized model and get minimal zero norm solutions of linear complementarity problems.

Suggested Citation

  • Meijuan Shang & Chao Zhang & Naihua Xiu, 2014. "Minimal Zero Norm Solutions of Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 795-814, December.
  • Handle: RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-014-0549-z
    DOI: 10.1007/s10957-014-0549-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0549-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0549-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Blog & G. van der Hoek & A. H. G. Rinnooy Kan & G. T. Timmer, 1983. "The Optimal Selection of Small Portfolios," Management Science, INFORMS, vol. 29(7), pages 792-798, July.
    2. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiangli & Guo, Xiao, 2015. "Spectral residual methods with two new non-monotone line searches for large-scale nonlinear systems of equations," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 59-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    2. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    3. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    4. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    5. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    6. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    7. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    8. E. Demidenko, 2008. "Criteria for Unconstrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 375-395, March.
    9. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    10. Zheng, Hua & Vong, Seakweng & Liu, Ling, 2019. "A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 396-405.
    11. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    12. G. Isac & S. Z. Németh, 2008. "REFE-Acceptable Mappings: Necessary and Sufficient Condition for the Nonexistence of a Regular Exceptional Family of Elements," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 507-520, June.
    13. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    14. Songfeng Zheng, 2021. "KLERC: kernel Lagrangian expectile regression calculator," Computational Statistics, Springer, vol. 36(1), pages 283-311, March.
    15. S A Gabriel & Y Shim & A J Conejo & S de la Torre & R García-Bertrand, 2010. "A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1404-1419, September.
    16. Rahul Savani & Bernhard von Stengel, 2016. "Unit vector games," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.
    17. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    18. A. K. Das, 2016. "Properties of some matrix classes based on principal pivot transform," Annals of Operations Research, Springer, vol. 243(1), pages 375-382, August.
    19. Massol, Olivier & Rifaat, Omer, 2018. "Phasing out the U.S. Federal Helium Reserve: Policy insights from a world helium model," Resource and Energy Economics, Elsevier, vol. 54(C), pages 186-211.
    20. Talman, Dolf & Yang, Zaifu, 2009. "A discrete multivariate mean value theorem with applications," European Journal of Operational Research, Elsevier, vol. 192(2), pages 374-381, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-014-0549-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.