IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i3d10.1007_s10957-024-02507-1.html
   My bibliography  Save this article

Regularized and Structured Tensor Total Least Squares Methods with Applications

Author

Listed:
  • Feiyang Han

    (Fudan University)

  • Yimin Wei

    (Fudan University)

  • Pengpeng Xie

    (Ocean University of China)

Abstract

Total least squares (TLS), also named as errors in variables in statistical analysis, is an effective method for solving linear equations with the situations, when noise is not just in observation data but also in mapping operations. Besides, the Tikhonov regularization is widely considered in plenty of ill-posed problems. Moreover, the structure of mapping operator plays a crucial role in solving the TLS problem. Tensor operators have some advantages over the characterization of models, which requires us to build the corresponding theory on the tensor TLS. This paper proposes tensor regularized TLS and structured tensor TLS methods for solving ill-conditioned and structured tensor equations, respectively, adopting a tensor-tensor-product. Properties and algorithms for the solution of these approaches are also presented and proved. Based on this method, some applications in image and video deblurring are explored. Numerical examples illustrate the effectiveness of our methods, compared with some existing methods.

Suggested Citation

  • Feiyang Han & Yimin Wei & Pengpeng Xie, 2024. "Regularized and Structured Tensor Total Least Squares Methods with Applications," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1101-1136, September.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:3:d:10.1007_s10957-024-02507-1
    DOI: 10.1007/s10957-024-02507-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02507-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02507-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:3:d:10.1007_s10957-024-02507-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.