Regularized and Structured Tensor Total Least Squares Methods with Applications
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-024-02507-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- A. H. Bentbib & A. El Hachimi & K. Jbilou & A. Ratnani, 2022. "A Tensor Regularized Nuclear Norm Method for Image and Video Completion," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 401-425, February.
- Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
- Xuezhong Wang & Maolin Che & Yimin Wei, 2020. "Tensor neural network models for tensor singular value decompositions," Computational Optimization and Applications, Springer, vol. 75(3), pages 753-777, April.
- Xuezhong Wang & Ping Wei & Yimin Wei, 2023. "A Fixed Point Iterative Method for Third-order Tensor Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 334-357, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin Liu, 2021. "Matrix‐based introduction to multivariate data analysis, by KoheiAdachi 2nd edition. Singapore: Springer Nature, 2020. pp. 457," Biometrics, The International Biometric Society, vol. 77(4), pages 1498-1500, December.
- Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
- Hayato Maki & Sakriani Sakti & Hiroki Tanaka & Satoshi Nakamura, 2018. "Quality prediction of synthesized speech based on tensor structured EEG signals," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
- Kim, Jonathan & Sandri, Brian J. & Rao, Raghavendra B. & Lock, Eric F., 2023. "Bayesian predictive modeling of multi-source multi-way data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
- Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
- Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
- Will Wei Sun & Junwei Lu & Han Liu & Guang Cheng, 2017. "Provable sparse tensor decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 899-916, June.
- Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
- Giuseppe Brandi & T. Di Matteo, 2020. "A new multilayer network construction via Tensor learning," Papers 2004.05367, arXiv.org.
- Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
- Hongtu Zhu & Dan Shen & Xuewei Peng & Leo Yufeng Liu, 2017. "MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1009-1021, July.
- Florian Gunsilius, 2020. "Distributional synthetic controls," Papers 2001.06118, arXiv.org, revised Dec 2021.
- Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
- Lu, Wenqi & Zhu, Zhongyi & Li, Rui & Lian, Heng, 2024. "Statistical performance of quantile tensor regression with convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
- Pluta, Dustin & Yu, Zhaoxia & Shen, Tong & Chen, Chuansheng & Xue, Gui & Ombao, Hernando, 2018. "Statistical methods and challenges in connectome genetics," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 83-86.
- Inkoo Lee & Debajyoti Sinha & Qing Mai & Xin Zhang & Dipankar Bandyopadhyay, 2023. "Bayesian regression analysis of skewed tensor responses," Biometrics, The International Biometric Society, vol. 79(3), pages 1814-1825, September.
- Huang, Baohua, 2024. "Conjugate gradient-type method for the tensor linear system via the T-product and its application in the calculation of Moore-Penrose inverse," Applied Mathematics and Computation, Elsevier, vol. 472(C).
- Xuezhong Wang & Ping Wei & Yimin Wei, 2023. "A Fixed Point Iterative Method for Third-order Tensor Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 334-357, April.
- Zengchao Xu & Shan Luo & Zehua Chen, 2023. "A Portmanteau Local Feature Discrimination Approach to the Classification with High-dimensional Matrix-variate Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 441-467, February.
More about this item
Keywords
Total least squares; Tikhonov regularization; Structure modeling; Tensor T-product; Image deblurring;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:3:d:10.1007_s10957-024-02507-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.