IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v49y2022i2p481-501.html
   My bibliography  Save this article

Efficient estimation via envelope chain in magnetic resonance imaging‐based studies

Author

Listed:
  • Lan Liu
  • Wei Li
  • Zhihua Su
  • Dennis Cook
  • Luca Vizioli
  • Essa Yacoub

Abstract

Magnetic resonance imaging (MRI) is a technique that scans the anatomical structure of the brain, whereas functional magnetic resonance imaging (fMRI) uses the same basic principles of atomic physics as MRI scans but image metabolic function. A major goal of MRI and fMRI study is to precisely delineate various types of tissues, anatomical structure, pathologies, and detect the brain regions that react to outer stimuli (e.g., viewing an image). As a key feature of these MRI‐based neuroimaging data, voxels (cubic pixels of the brain volume) are highly correlated. However, the associations between voxels are often overlooked in the statistical analysis. We adapt a recently proposed dimension reduction method called the envelope method to analyze neuoimaging data taking into account correlation among voxels. We refer to the modified procedure the envelope chain procedure. Because the envelope chain procedure has not been employed before, we demonstrate in simulations the empirical performance of estimator, and examine its sensitivity when our assumptions are violated. We use the estimator to analyze the MRI data from ADHD‐200 study. Data analyses demonstrate that leveraging the correlations among voxels can significantly increase the efficiency of the regression analysis, thus achieving higher detection power with small sample sizes.

Suggested Citation

  • Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
  • Handle: RePEc:bla:scjsta:v:49:y:2022:i:2:p:481-501
    DOI: 10.1111/sjos.12522
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12522
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Dennis Cook & Xin Zhang, 2015. "Foundations for Envelope Models and Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 599-611, June.
    2. Zhihua Su & R. Dennis Cook, 2012. "Inner envelopes: efficient estimation in multivariate linear regression," Biometrika, Biometrika Trust, vol. 99(3), pages 687-702.
    3. Cook, R. Dennis & Su, Zhihua & Yang, Yi, 2015. "envlp: A MATLAB Toolbox for Computing Envelope Estimators in Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i08).
    4. D. J. Eck & R. D. Cook, 2017. "Weighted envelope estimation to handle variability in model selection," Biometrika, Biometrika Trust, vol. 104(3), pages 743-749.
    5. R. Dennis Cook & Liliana Forzani & Xin Zhang, 2015. "Envelopes and reduced-rank regression," Biometrika, Biometrika Trust, vol. 102(2), pages 439-456.
    6. Yuhong Yang, 2005. "Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation," Biometrika, Biometrika Trust, vol. 92(4), pages 937-950, December.
    7. Z. Su & G. Zhu & X. Chen & Y. Yang, 2016. "Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression," Biometrika, Biometrika Trust, vol. 103(3), pages 579-593.
    8. Lexin Li & Xin Zhang, 2017. "Parsimonious Tensor Response Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1131-1146, July.
    9. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    2. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    3. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    4. Yeonhee Park & Zhihua Su & Hongtu Zhu, 2017. "Groupwise envelope models for imaging genetic analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1243-1253, December.
    5. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    6. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    7. Giuseppe Brandi & T. Di Matteo, 2020. "A new multilayer network construction via Tensor learning," Papers 2004.05367, arXiv.org.
    8. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    9. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Inkoo Lee & Debajyoti Sinha & Qing Mai & Xin Zhang & Dipankar Bandyopadhyay, 2023. "Bayesian regression analysis of skewed tensor responses," Biometrics, The International Biometric Society, vol. 79(3), pages 1814-1825, September.
    11. D. J. Eck & R. D. Cook, 2017. "Weighted envelope estimation to handle variability in model selection," Biometrika, Biometrika Trust, vol. 104(3), pages 743-749.
    12. Monica Billio & Roberto Casarin & Matteo Iacopini & Sylvia Kaufmann, 2023. "Bayesian Dynamic Tensor Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 429-439, April.
    13. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    14. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    15. Bo Wei & Limin Peng & Ying Guo & Amita Manatunga & Jennifer Stevens, 2023. "Tensor response quantile regression with neuroimaging data," Biometrics, The International Biometric Society, vol. 79(3), pages 1947-1958, September.
    16. Ghannam, Mai & Nkurunziza, Sévérien, 2023. "Tensor Stein-rules in a generalized tensor regression model," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    17. Guo, Wenxing & Balakrishnan, Narayanaswamy & He, Mu, 2023. "Envelope-based sparse reduced-rank regression for multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    18. Jain Yashita & Ding Shanshan & Qiu Jing, 2019. "Sliced inverse regression for integrative multi-omics data analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    19. Lin Liu, 2021. "Matrix‐based introduction to multivariate data analysis, by KoheiAdachi 2nd edition. Singapore: Springer Nature, 2020. pp. 457," Biometrics, The International Biometric Society, vol. 77(4), pages 1498-1500, December.
    20. Chirwa, Themba G. & Odhiambo, Nicholas M., 2016. "What Drives Long-Run Economic Growth? Empirical Evidence from South Africa," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 69(4), pages 429-456.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:49:y:2022:i:2:p:481-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.