IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i1d10.1007_s10898-023-01293-w.html
   My bibliography  Save this article

Low-rank matrix estimation via nonconvex optimization methods in multi-response errors-in-variables regression

Author

Listed:
  • Xin Li

    (Northwest University)

  • Dongya Wu

    (Northwest University)

Abstract

Noisy and missing data cannot be avoided in real application, such as bioinformatics, economics and remote sensing. Existing methods mainly focus on linear errors-in-variables regression, while relatively little attention is paid for the case of multivariate responses, and how to achieve consistent estimation under corrupted covariates is still an open question. In this paper, a nonconvex error-corrected estimator is proposed for the matrix estimation problem in the multi-response errors-in-variables regression model. Statistical and computational properties for global solutions of the estimator are analysed. In the statistical aspect, the nonasymptotic recovery bound for all global solutions of the nonconvex estimator is established. In the computational aspect, the proximal gradient method is applied to solve the nonconvex optimization problem and proved to linearly converge to a near-global solution. Sufficient conditions are verified in order to obtain probabilistic consequences for specific types of measurement errors by virtue of random matrix analysis. Finally, simulation results on synthetic and real neuroimaging data demonstrate the theoretical properties and show nice consistency under high-dimensional scaling.

Suggested Citation

  • Xin Li & Dongya Wu, 2024. "Low-rank matrix estimation via nonconvex optimization methods in multi-response errors-in-variables regression," Journal of Global Optimization, Springer, vol. 88(1), pages 79-114, January.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:1:d:10.1007_s10898-023-01293-w
    DOI: 10.1007/s10898-023-01293-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01293-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01293-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:1:d:10.1007_s10898-023-01293-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.