IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v200y2024ics0047259x23000957.html
   My bibliography  Save this article

Statistical performance of quantile tensor regression with convex regularization

Author

Listed:
  • Lu, Wenqi
  • Zhu, Zhongyi
  • Li, Rui
  • Lian, Heng

Abstract

In this paper, we consider high-dimensional quantile tensor regression using a general convex decomposable regularizer and analyze the statistical performances of the estimator. The rates are stated in terms of the intrinsic dimension of the estimation problem, which is, roughly speaking, the dimension of the smallest subspace that contains the true coefficient. Previously, convex regularized tensor regression has been studied with a least squares loss, Gaussian tensorial predictors and Gaussian errors, with rates that depend on the Gaussian width of a convex set. Our results extend the previous work to nonsmooth quantile loss. To deal with the non-Gaussian setting, we use the concept of Rademacher complexity with appropriate concentration inequalities instead of the Gaussian width. For the multi-linear nuclear norm penalty, our Orlicz norm bound for the operator norm of a random matrix may be of independent interest. We validate the theoretical guarantees in numerical experiments. We also demonstrate advantage of quantile regression over mean regression, and compare the performance of convex regularization method and nonconvex decomposition method in solving quantile tensor regression problem in simulation studies.

Suggested Citation

  • Lu, Wenqi & Zhu, Zhongyi & Li, Rui & Lian, Heng, 2024. "Statistical performance of quantile tensor regression with convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000957
    DOI: 10.1016/j.jmva.2023.105249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Yuqing Pan & Qing Mai & Xin Zhang, 2019. "Covariate-Adjusted Tensor Classification in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1305-1319, July.
    3. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    4. Will Wei Sun & Lexin Li, 2019. "Dynamic Tensor Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1894-1907, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    2. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    3. Inkoo Lee & Debajyoti Sinha & Qing Mai & Xin Zhang & Dipankar Bandyopadhyay, 2023. "Bayesian regression analysis of skewed tensor responses," Biometrics, The International Biometric Society, vol. 79(3), pages 1814-1825, September.
    4. Zengchao Xu & Shan Luo & Zehua Chen, 2023. "A Portmanteau Local Feature Discrimination Approach to the Classification with High-dimensional Matrix-variate Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 441-467, February.
    5. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    6. Ke, Baofang & Zhao, Weihua & Wang, Lei, 2023. "Smoothed tensor quantile regression estimation for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    7. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    8. Molyneux, Philip & Pancotto, Livia & Reghezza, Alessio & Rodriguez d'Acri, Costanza, 2022. "Interest rate risk and monetary policy normalisation in the euro area," Journal of International Money and Finance, Elsevier, vol. 124(C).
    9. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    10. Georgios Bertsatos & Plutarchos Sakellaris & Mike G. Tsionas, 2022. "Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure," Empirical Economics, Springer, vol. 62(2), pages 605-634, February.
    11. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    12. Lu, Yao & Zhan, Shuwei & Zhan, Minghua, 2024. "Has FinTech changed the sensitivity of corporate investment to interest rates?—Evidence from China," Research in International Business and Finance, Elsevier, vol. 68(C).
    13. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    14. Daniele, Vittorio, 2007. "Criminalità e investimenti esteri. Un’analisi per le province italiane [The effect of organized crime on Foreign Investments. An Empirical Analysis for the Italian Provinces]," MPRA Paper 6417, University Library of Munich, Germany.
    15. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    16. Cuesta, Lizeth & Ruiz, Yomara, 2021. "Efecto de la globalización sobre la desigualdad. Un estudio global para 104 países usando regresiones cuantílicas [Effect of globalization on inequality. A global study for 104 countries using quan," MPRA Paper 111022, University Library of Munich, Germany.
    17. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    18. Cowling, Marc & Ughetto, Elisa & Lee, Neil, 2018. "The innovation debt penalty: Cost of debt, loan default, and the effects of a public loan guarantee on high-tech firms," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 166-176.
    19. Guili Liao & Qimeng Liu & Rongmao Zhang & Shifang Zhang, 2022. "Rank test of unit‐root hypothesis with AR‐GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 695-719, September.
    20. Shweta Bahl & Ajay Sharma, 2021. "Education–Occupation Mismatch and Dispersion in Returns to Education: Evidence from India," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 251-298, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.