IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i4p1498-1500.html
   My bibliography  Save this article

Matrix‐based introduction to multivariate data analysis, by KoheiAdachi 2nd edition. Singapore: Springer Nature, 2020. pp. 457

Author

Listed:
  • Lin Liu

Abstract

No abstract is available for this item.

Suggested Citation

  • Lin Liu, 2021. "Matrix‐based introduction to multivariate data analysis, by KoheiAdachi 2nd edition. Singapore: Springer Nature, 2020. pp. 457," Biometrics, The International Biometric Society, vol. 77(4), pages 1498-1500, December.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:4:p:1498-1500
    DOI: 10.1111/biom.13566
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13566
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
    2. Bo Wei & Limin Peng & Ying Guo & Amita Manatunga & Jennifer Stevens, 2023. "Tensor response quantile regression with neuroimaging data," Biometrics, The International Biometric Society, vol. 79(3), pages 1947-1958, September.
    3. Yao Lei Xu & Kriton Konstantinidis & Danilo P. Mandic, 2022. "Graph-Regularized Tensor Regression: A Domain-Aware Framework for Interpretable Multi-Way Financial Modelling," Papers 2211.05581, arXiv.org.
    4. Tianqi Sun & Weiyu Li & Lu Lin, 2024. "Matrix-variate generalized linear model with measurement error," Statistical Papers, Springer, vol. 65(6), pages 3935-3958, August.
    5. Xiaoshan Li & Da Xu & Hua Zhou & Lexin Li, 2018. "Tucker Tensor Regression and Neuroimaging Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 520-545, December.
    6. Hayato Maki & Sakriani Sakti & Hiroki Tanaka & Satoshi Nakamura, 2018. "Quality prediction of synthesized speech based on tensor structured EEG signals," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    7. Zhao, Junlong & Niu, Lu & Zhan, Shushi, 2017. "Trace regression model with simultaneously low rank and row(column) sparse parameter," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 1-18.
    8. Jade Xiaoqing Wang & Yimei Li & Wilburn E. Reddick & Heather M. Conklin & John O. Glass & Arzu Onar‐Thomas & Amar Gajjar & Cheng Cheng & Zhao‐Hua Lu, 2023. "A high‐dimensional mediation model for a neuroimaging mediator: Integrating clinical, neuroimaging, and neurocognitive data to mitigate late effects in pediatric cancer," Biometrics, The International Biometric Society, vol. 79(3), pages 2430-2443, September.
    9. Kim, Jonathan & Sandri, Brian J. & Rao, Raghavendra B. & Lock, Eric F., 2023. "Bayesian predictive modeling of multi-source multi-way data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    10. Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
    11. Ghannam, Mai & Nkurunziza, Sévérien, 2023. "Tensor Stein-rules in a generalized tensor regression model," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    12. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    13. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
    14. Will Wei Sun & Junwei Lu & Han Liu & Guang Cheng, 2017. "Provable sparse tensor decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 899-916, June.
    15. Vivek F. Farias & Andrew A. L, 2019. "Learning Preferences with Side Information," Management Science, INFORMS, vol. 65(7), pages 3131-3149, July.
    16. Andrea Bucci, 2022. "A smooth transition autoregressive model for matrix-variate time series," Papers 2212.08615, arXiv.org.
    17. Feiyang Han & Yimin Wei & Pengpeng Xie, 2024. "Regularized and Structured Tensor Total Least Squares Methods with Applications," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1101-1136, September.
    18. Okano, Ryo & Imaizumi, Masaaki, 2024. "Distribution-on-distribution regression with Wasserstein metric: Multivariate Gaussian case," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    19. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    20. Giuseppe Brandi & T. Di Matteo, 2020. "A new multilayer network construction via Tensor learning," Papers 2004.05367, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:4:p:1498-1500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.