IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i3d10.1007_s10957-024-02482-7.html
   My bibliography  Save this article

Proximal Point Method for Quasiconvex Functions in Riemannian Manifolds

Author

Listed:
  • Erik Alex Papa Quiroz

    (Universidade Federal de Goiás
    Universidad Nacional Mayor de San Marcos
    Universidad Privada del Norte)

Abstract

This paper studies the convergence of the proximal point method for quasiconvex functions in finite dimensional complete Riemannian manifolds. We prove initially that, in the general case, when the objective function is proper and lower semicontinuous, each accumulation point of the sequence generated by the method, if it exists, is a limiting critical point of the function. Then, under the assumptions that the sectional curvature of the manifold is bounded above by some non negative constant and the objective function is quasiconvex we analyze two cases. When the constant is zero, the global convergence of the algorithm to a limiting critical point is assured and if it is positive, we prove the local convergence for a class of quasiconvex functions, which includes Lipschitz functions.

Suggested Citation

  • Erik Alex Papa Quiroz, 2024. "Proximal Point Method for Quasiconvex Functions in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1268-1285, September.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:3:d:10.1007_s10957-024-02482-7
    DOI: 10.1007/s10957-024-02482-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02482-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02482-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    2. David G. Luenberger, 1972. "The Gradient Projection Method Along Geodesics," Management Science, INFORMS, vol. 18(11), pages 620-631, July.
    3. Orizon Pereira Ferreira & Sándor Zoltán Németh & Lianghai Xiao, 2020. "On the Spherical Quasi-convexity of Quadratic Functions on Spherically Subdual Convex Sets," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 1-21, October.
    4. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    2. Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.
    3. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    4. Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
    5. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    6. A. Kabgani & F. Lara, 2022. "Strong subdifferentials: theory and applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 349-368, October.
    7. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    8. Y. Yang, 2007. "Globally Convergent Optimization Algorithms on Riemannian Manifolds: Uniform Framework for Unconstrained and Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 245-265, February.
    9. Jingyang Zhou & Kok Teo & Di Zhou & Guohui Zhao, 2012. "Nonlinear optimal feedback control for lunar module soft landing," Journal of Global Optimization, Springer, vol. 52(2), pages 211-227, February.
    10. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos Oliveira Souza, 2019. "Computing Riemannian Center of Mass on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 977-992, December.
    11. Jing Wang & Huafei Sun & Simone Fiori, 2019. "Empirical Means on Pseudo-Orthogonal Groups," Mathematics, MDPI, vol. 7(10), pages 1-20, October.
    12. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    13. Alfredo Iusem & Felipe Lara & Raúl T. Marcavillaca & Le Hai Yen, 2024. "A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming," Journal of Global Optimization, Springer, vol. 90(3), pages 755-779, November.
    14. Fiori, Simone, 2016. "A Riemannian steepest descent approach over the inhomogeneous symplectic group: Application to the averaging of linear optical systems," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 251-264.
    15. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    16. S.-M. Grad & F. Lara & R. T. Marcavillaca, 2023. "Relaxed-inertial proximal point type algorithms for quasiconvex minimization," Journal of Global Optimization, Springer, vol. 85(3), pages 615-635, March.
    17. P.-A. Absil & I. Oseledets, 2015. "Low-rank retractions: a survey and new results," Computational Optimization and Applications, Springer, vol. 62(1), pages 5-29, September.
    18. Chinedu Izuchukwu & Grace N. Ogwo & Yekini Shehu, 2024. "Proximal Point Algorithms with Inertial Extrapolation for Quasi-convex Pseudo-monotone Equilibrium Problems," Networks and Spatial Economics, Springer, vol. 24(3), pages 681-706, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:3:d:10.1007_s10957-024-02482-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.