IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v283y2016icp251-264.html
   My bibliography  Save this article

A Riemannian steepest descent approach over the inhomogeneous symplectic group: Application to the averaging of linear optical systems

Author

Listed:
  • Fiori, Simone

Abstract

The present manuscript describes a Riemannian-steepest-descent approach to compute the average out of a set of optical system transference matrices on the basis of a Lie-group averaging criterion function. The devised averaging algorithm is compared with the Harris’ exponential-mean-logarithm averaging rule, especially developed in computational ophthalmology to compute the average character of a set of biological optical systems. Results of numerical experiments show that the iterative algorithm based on gradient steepest descent implemented by exponential-map stepping converges to solutions that are in good agreement with those obtained by the application of Harris’ exponential-mean-logarithm averaging rule. Such results seem to confirm that Harris’ exponential-mean-logarithm averaging rule is numerically optimal in a Lie-group averaging sense.

Suggested Citation

  • Fiori, Simone, 2016. "A Riemannian steepest descent approach over the inhomogeneous symplectic group: Application to the averaging of linear optical systems," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 251-264.
  • Handle: RePEc:eee:apmaco:v:283:y:2016:i:c:p:251-264
    DOI: 10.1016/j.amc.2016.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316301217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David G. Luenberger, 1972. "The Gradient Projection Method Along Geodesics," Management Science, INFORMS, vol. 18(11), pages 620-631, July.
    2. Celledoni, Elena & Fiori, Simone, 2008. "Descent methods for optimization on homogeneous manifolds," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 1298-1323.
    3. R.-B. Wu & R. Chakrabarti & H. Rabitz, 2010. "Critical Landscape Topology for Optimization on the Symplectic Group," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 387-406, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang & Huafei Sun & Simone Fiori, 2019. "Empirical Means on Pseudo-Orthogonal Groups," Mathematics, MDPI, vol. 7(10), pages 1-20, October.
    2. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    3. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos Oliveira Souza, 2019. "Computing Riemannian Center of Mass on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 977-992, December.
    4. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    5. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    6. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    7. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    8. P.-A. Absil & I. Oseledets, 2015. "Low-rank retractions: a survey and new results," Computational Optimization and Applications, Springer, vol. 62(1), pages 5-29, September.
    9. Y. Yang, 2007. "Globally Convergent Optimization Algorithms on Riemannian Manifolds: Uniform Framework for Unconstrained and Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 245-265, February.
    10. Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.
    11. Jingyang Zhou & Kok Teo & Di Zhou & Guohui Zhao, 2012. "Nonlinear optimal feedback control for lunar module soft landing," Journal of Global Optimization, Springer, vol. 52(2), pages 211-227, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:283:y:2016:i:c:p:251-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.