IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v196y2023i1d10.1007_s10957-022-02137-5.html
   My bibliography  Save this article

Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization

Author

Listed:
  • Dewei Zhang

    (The Ohio State University)

  • Sam Davanloo Tajbakhsh

    (The Ohio State University)

Abstract

We propose a stochastic variance-reduced cubic regularized Newton algorithm to optimize the finite-sum problem over a Riemannian submanifold of the Euclidean space. The proposed algorithm requires a full gradient and Hessian update at the beginning of each epoch while it performs stochastic variance-reduced updates in the iterations within each epoch. The iteration complexity of $$O(\epsilon ^{-3/2})$$ O ( ϵ - 3 / 2 ) to obtain an $$(\epsilon ,\sqrt{\epsilon })$$ ( ϵ , ϵ ) -second-order stationary point, i.e., a point with the Riemannian gradient norm upper bounded by $$\epsilon $$ ϵ and minimum eigenvalue of Riemannian Hessian lower bounded by $$-\sqrt{\epsilon }$$ - ϵ , is established when the manifold is embedded in the Euclidean space. Furthermore, the paper proposes a computationally more appealing modification of the algorithm which only requires an inexact solution of the cubic regularized Newton subproblem with the same iteration complexity. The proposed algorithm is evaluated and compared with three other Riemannian second-order methods over two numerical studies on estimating the inverse scale matrix of the multivariate t-distribution on the manifold of symmetric positive definite matrices and estimating the parameter of a linear classifier on the sphere manifold.

Suggested Citation

  • Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.
  • Handle: RePEc:spr:joptap:v:196:y:2023:i:1:d:10.1007_s10957-022-02137-5
    DOI: 10.1007/s10957-022-02137-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02137-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02137-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    2. Vaz de Melo Mendes, Beatriz & Martins de Souza, Rafael, 2004. "Measuring financial risks with copulas," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 27-45.
    3. O. P. Ferreira & P. R. Oliveira, 1998. "Subgradient Algorithm on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 93-104, April.
    4. David G. Luenberger, 1972. "The Gradient Projection Method Along Geodesics," Management Science, INFORMS, vol. 18(11), pages 620-631, July.
    5. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, October.
    6. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    2. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    3. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    4. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    5. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    6. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    7. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    8. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    9. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    10. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    11. Lamboni, Matieyendou, 2022. "Efficient dependency models: Simulating dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 199-217.
    12. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    13. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    14. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    15. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    16. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    17. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    18. da Silva Alves, Charlan Dellon & Oliveira, Paulo Roberto & Gregório, Ronaldo Malheiros, 2021. "Lα Riemannian weighted centers of mass applied to compose an image filter to diffusion tensor imaging," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    19. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, October.
    20. A. El-Bassiouny & M. Jones, 2009. "A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 465-481, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:196:y:2023:i:1:d:10.1007_s10957-022-02137-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.