IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i3d10.1007_s10957-024-02555-7.html
   My bibliography  Save this article

Self-Adaptive Extragradient Algorithms for Quasi-Equilibrium Problems

Author

Listed:
  • Tran Thang

    (Electric Power University)

  • Xuan Thanh Le

    (Vietnam Academy of Science and Technology)

Abstract

We propose two iterative algorithms for solving two classes of quasi-equilibrium problems in Hilbert spaces: pseudomonotone and quasimonotone ones. The algorithms combine the subgradient method and the projection method with self-adaptive step sizes. Convergence of our proposed algorithms requires a condition that is milder than the one commonly used in the existing papers. Numerical experiments show that our algorithms are efficient and competitive to other extragradient-type, projection-type, and proximal point algorithms in solving the problem.

Suggested Citation

  • Tran Thang & Xuan Thanh Le, 2024. "Self-Adaptive Extragradient Algorithms for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2988-3013, December.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02555-7
    DOI: 10.1007/s10957-024-02555-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02555-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02555-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianzhong Zhang & Biao Qu & Naihua Xiu, 2010. "Some projection-like methods for the generalized Nash equilibria," Computational Optimization and Applications, Springer, vol. 45(1), pages 89-109, January.
    2. Xingju Cai & Guoyong Gu & Bingsheng He, 2014. "On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators," Computational Optimization and Applications, Springer, vol. 57(2), pages 339-363, March.
    3. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    4. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    5. Marco Castellani & Massimiliano Giuli & Massimo Pappalardo, 2018. "A Ky Fan Minimax Inequality for Quasiequilibria on Finite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 53-64, October.
    6. Minglu Ye & Yiran He, 2015. "A double projection method for solving variational inequalities without monotonicity," Computational Optimization and Applications, Springer, vol. 60(1), pages 141-150, January.
    7. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    8. A. Iusem & F. Lara, 2022. "Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 443-461, June.
    9. Efe A. Ok, 2007. "Preliminaries of Real Analysis, from Real Analysis with Economic Applications," Introductory Chapters, in: Real Analysis with Economic Applications, Princeton University Press.
    10. Sorin-Mihai Grad & Felipe Lara, 2021. "Solving Mixed Variational Inequalities Beyond Convexity," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 565-580, August.
    11. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    12. Hoang Tuy, 2016. "Convex Analysis and Global Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-31484-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorin-Mihai Grad & Felipe Lara & Raúl Tintaya Marcavillaca, 2024. "Relaxed-Inertial Proximal Point Algorithms for Nonconvex Equilibrium Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2233-2262, December.
    2. Alfredo Iusem & Felipe Lara & Raúl T. Marcavillaca & Le Hai Yen, 2024. "A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming," Journal of Global Optimization, Springer, vol. 90(3), pages 755-779, November.
    3. Riccardi, R. & Bonenti, F. & Allevi, E. & Avanzi, C. & Gnudi, A., 2015. "The steel industry: A mathematical model under environmental regulations," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1017-1027.
    4. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    5. Tóbiás, Áron, 2022. "Equilibrium non-existence in generalized games," Games and Economic Behavior, Elsevier, vol. 135(C), pages 327-337.
    6. Rodica Ioana Lung & Noémi Gaskó & Mihai Alexandru Suciu, 2020. "Pareto-based evolutionary multiobjective approaches and the generalized Nash equilibrium problem," Journal of Heuristics, Springer, vol. 26(4), pages 561-584, August.
    7. John Cotrina & Javier Zúñiga, 2018. "Time-Dependent Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 1054-1064, December.
    8. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    9. Axel Dreves, 2016. "Improved error bound and a hybrid method for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 65(2), pages 431-448, November.
    10. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.
    11. Zheng Peng & Wenxing Zhu, 2013. "An Alternating Direction Method for Nash Equilibrium of Two-Person Games with Alternating Offers," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 533-551, May.
    12. Domenico Scopelliti, 2022. "On a Class of Multistage Stochastic Hierarchical Problems," Mathematics, MDPI, vol. 10(21), pages 1-13, October.
    13. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    14. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    15. S.-M. Grad & F. Lara & R. T. Marcavillaca, 2023. "Relaxed-inertial proximal point type algorithms for quasiconvex minimization," Journal of Global Optimization, Springer, vol. 85(3), pages 615-635, March.
    16. Axel Dreves, 2014. "Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 139-159, October.
    17. Chinedu Izuchukwu & Grace N. Ogwo & Yekini Shehu, 2024. "Proximal Point Algorithms with Inertial Extrapolation for Quasi-convex Pseudo-monotone Equilibrium Problems," Networks and Spatial Economics, Springer, vol. 24(3), pages 681-706, September.
    18. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    19. Förster, Manuel & Riedel, Frank, 2016. "Distorted Voronoi languages," Center for Mathematical Economics Working Papers 458, Center for Mathematical Economics, Bielefeld University.
    20. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2017. "Uniqueness of Nash Equilibrium in Continuous Weighted Potential Games," CSEF Working Papers 471, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy, revised 18 Jun 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02555-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.