IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v173y2017i2d10.1007_s10957-017-1093-4.html
   My bibliography  Save this article

Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds

Author

Listed:
  • Glaydston C. Bento

    (IME, Universidade Federal de Goiás)

  • Orizon P. Ferreira

    (IME, Universidade Federal de Goiás)

  • Jefferson G. Melo

    (IME, Universidade Federal de Goiás)

Abstract

This paper considers optimization problems on Riemannian manifolds and analyzes the iteration-complexity for gradient and subgradient methods on manifolds with nonnegative curvatures. By using tools from Riemannian convex analysis and directly exploring the tangent space of the manifold, we obtain different iteration-complexity bounds for the aforementioned methods, thereby complementing and improving related results. Moreover, we also establish an iteration-complexity bound for the proximal point method on Hadamard manifolds.

Suggested Citation

  • Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
  • Handle: RePEc:spr:joptap:v:173:y:2017:i:2:d:10.1007_s10957-017-1093-4
    DOI: 10.1007/s10957-017-1093-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1093-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1093-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    2. David G. Luenberger, 1972. "The Gradient Projection Method Along Geodesics," Management Science, INFORMS, vol. 18(11), pages 620-631, July.
    3. J. Souza & P. Oliveira, 2015. "A proximal point algorithm for DC fuctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 63(4), pages 797-810, December.
    4. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    5. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    6. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    7. NESTEROV , Yu. & TODD, Mike, 2002. "On the Riemannian geometry defined by self-concordant barriers and interior-point methods," LIDAM Reprints CORE 1595, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. O. P. Ferreira & P. R. Oliveira, 1998. "Subgradient Algorithm on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 93-104, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    2. Geovani N. Grapiglia & Gabriel F. D. Stella, 2023. "An Adaptive Riemannian Gradient Method Without Function Evaluations," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1140-1160, June.
    3. Harry Oviedo, 2023. "Proximal Point Algorithm with Euclidean Distance on the Stiefel Manifold," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    4. Yldenilson Torres Almeida & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos de Oliveira Souza, 2020. "A modified proximal point method for DC functions on Hadamard manifolds," Computational Optimization and Applications, Springer, vol. 76(3), pages 649-673, July.
    5. Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    2. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    3. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    4. Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.
    5. Yldenilson Torres Almeida & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos de Oliveira Souza, 2020. "A modified proximal point method for DC functions on Hadamard manifolds," Computational Optimization and Applications, Springer, vol. 76(3), pages 649-673, July.
    6. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    7. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos Oliveira Souza, 2019. "Computing Riemannian Center of Mass on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 977-992, December.
    8. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    9. Ítalo Dowell Lira Melo & João Xavier Cruz Neto & José Márcio Machado Brito, 2022. "Strong Convergence of Alternating Projections," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 306-324, July.
    10. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    11. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    12. João S. Andrade & Jurandir de O. Lopes & João Carlos de O. Souza, 2023. "An inertial proximal point method for difference of maximal monotone vector fields in Hadamard manifolds," Journal of Global Optimization, Springer, vol. 85(4), pages 941-968, April.
    13. E. A. Papa Quiroz & P. R. Oliveira, 2007. "New Self-Concordant Barrier for the Hypercube," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 475-490, December.
    14. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    15. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    16. Edvaldo E. A. Batista & Glaydston de Carvalho Bento & Orizon P. Ferreira, 2016. "Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 916-931, September.
    17. João Xavier da Cruz Neto & Ítalo Dowell Lira Melo & Paulo Alexandre Araújo Sousa, 2017. "Convexity and Some Geometric Properties," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 459-470, May.
    18. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    19. Gregório, R.M. & Oliveira, P.R. & Alves, C.D.S., 2019. "A two-phase-like proximal point algorithm in domains of positivity," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 67-89.
    20. Erik Alex Papa Quiroz, 2024. "Proximal Point Method for Quasiconvex Functions in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1268-1285, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:173:y:2017:i:2:d:10.1007_s10957-017-1093-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.