IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v168y2016i3d10.1007_s10957-015-0861-2.html
   My bibliography  Save this article

A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds

Author

Listed:
  • Glaydston Carvalho Bento

    (Universidade Federal de Goiás)

  • João Xavier Cruz Neto

    (Universidade Federal do Piauí)

  • Paulo Roberto Oliveira

    (Universidade Federal do Rio de Janeiro)

Abstract

In this paper, we present a new approach to the proximal point method in the Riemannian context. In particular, without requiring any restrictive assumptions about the sign of the sectional curvature of the manifold, we obtain full convergence for any bounded sequence generated by the proximal point method, in the case that the objective function satisfies the Kurdyka–Lojasiewicz inequality. In our approach, we extend the applicability of the proximal point method to be able to solve any problem that can be formulated as the minimizing of a definable function, such as one that is analytic, restricted to a compact manifold, on which the sign of the sectional curvature is not necessarily constant.

Suggested Citation

  • Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
  • Handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0861-2
    DOI: 10.1007/s10957-015-0861-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0861-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0861-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    3. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    4. J. H. Wang & G. López & V. Martín-Márquez & C. Li, 2010. "Monotone and Accretive Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 691-708, September.
    5. O. Ferreira & L. Pérez & S. Németh, 2005. "Singularities of Monotone Vector Fields and an Extragradient-type Algorithm," Journal of Global Optimization, Springer, vol. 31(1), pages 133-151, January.
    6. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    7. Joao Xavier Cruz Neto & Paulo Roberto Oliveira & A. Soares Jr Pedro & Antoine Soubeyran, 2013. "Learning how to Play Nash, Potential Games and Alternating Minimization Method for Structured Nonconvex Problems on Riemannian Manifolds," Post-Print hal-01500875, HAL.
    8. Teemu Pennanen, 2002. "Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 170-191, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    2. Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.
    3. Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
    4. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    5. Erik Alex Papa Quiroz, 2024. "Proximal Point Method for Quasiconvex Functions in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1268-1285, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    2. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    3. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    4. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    5. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    6. G. C. Bento & J. X. Cruz Neto & P. A. Soares & A. Soubeyran, 2022. "A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires," Annals of Operations Research, Springer, vol. 316(2), pages 1301-1318, September.
    7. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    8. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    9. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    10. Glaydston de C. Bento & João Xavier Cruz Neto & Lucas V. Meireles, 2018. "Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 37-52, October.
    11. Savin Treanţă & Balendu Bhooshan Upadhyay & Arnav Ghosh & Kamsing Nonlaopon, 2022. "Optimality Conditions for Multiobjective Mathematical Programming Problems with Equilibrium Constraints on Hadamard Manifolds," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    12. Xiao-bo Li & Li-wen Zhou & Nan-jing Huang, 2016. "Gap Functions and Global Error Bounds for Generalized Mixed Variational Inequalities on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 830-849, March.
    13. G. C. Bento & A. Soubeyran, 2015. "Generalized Inexact Proximal Algorithms: Routine’s Formation with Resistance to Change, Following Worthwhile Changes," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 172-187, July.
    14. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    15. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    16. Xiangmei Wang & Chong Li & Jen-Chih Yao, 2016. "On Some Basic Results Related to Affine Functions on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 783-803, September.
    17. Konrawut Khammahawong & Parin Chaipunya & Kamonrat Sombut, 2022. "Approximating Common Fixed Points of Nonexpansive Mappings on Hadamard Manifolds with Applications," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    18. G. C. Bento & J. X. Cruz Neto & P. S. M. Santos, 2013. "An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 108-124, October.
    19. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    20. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0861-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.