Optimal step length for the Newton method: case of self-concordant functions
Author
Abstract
Suggested Citation
DOI: 10.1007/s00186-021-00755-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, June.
- de Klerk, Etienne & Glineur, Francois & Taylor, Adrien, 2020.
"Worst-case convergence analysis of inexact gradient and Newton methods through semidefinite programming performance estimation,"
Other publications TiSEM
03a65c83-e88f-4723-a50e-2, Tilburg University, School of Economics and Management.
- De Klerk, Etienne & Glineur, François & Taylor, Adrien B., 2020. "Worst-Case Convergence Analysis of Inexact Gradient and Newton Methods Through Semidefinite Programming Performance Estimation," LIDAM Reprints CORE 3134, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Daniel Ralph, 1994. "Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 352-389, May.
- DE KLERK, Etienne & GLINEUR, François & TAYLOR, Adrien B., 2016.
"On the Worst-case Complexity of the Gradient Method with Exact Line Search for Smooth Strongly Convex Functions,"
LIDAM Discussion Papers CORE
2016027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- de Klerk, Etienne & Glineur, Francois & Taylor, Adrien, 2017. "On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions," Other publications TiSEM 8cc0e8dd-b6cd-4f4f-9dcb-9, Tilburg University, School of Economics and Management.
- Etienne de Klerk & François Glineur & Adrien B. Taylor, 2017. "On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions," LIDAM Reprints CORE 2918, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roland Hildebrand, 2022. "Semi-definite Representations for Sets of Cubics on the Two-dimensional Sphere," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 666-675, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hadi Abbaszadehpeivasti & Etienne Klerk & Moslem Zamani, 2024. "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 475-496, July.
- Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2022. "The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions," Other publications TiSEM 061688c6-f97c-4024-bb5b-1, Tilburg University, School of Economics and Management.
- André Uschmajew & Bart Vandereycken, 2022. "A Note on the Optimal Convergence Rate of Descent Methods with Fixed Step Sizes for Smooth Strongly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 364-373, July.
- Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
- Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018.
"Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization,"
Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
- Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact worst-case convergence rates of the proximal gradient method for composite convex minimization," LIDAM Reprints CORE 2975, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
- Guoyong Gu & Junfeng Yang, 2024. "Tight Ergodic Sublinear Convergence Rate of the Relaxed Proximal Point Algorithm for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 373-387, July.
- Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
- A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
- Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
- Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
- Victor DeMiguel & Huifu Xu, 2009. "A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application," Operations Research, INFORMS, vol. 57(5), pages 1220-1235, October.
- Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2023. "Convergence rate analysis of randomized and cyclic coordinate descent for convex optimization through semidefinite programming," Other publications TiSEM 88512ac0-c26a-4a99-b840-3, Tilburg University, School of Economics and Management.
- Francisco García Riesgo & Sergio Luis Suárez Gómez & Enrique Díez Alonso & Carlos González-Gutiérrez & Jesús Daniel Santos, 2021. "Fully Convolutional Approaches for Numerical Approximation of Turbulent Phases in Solar Adaptive Optics," Mathematics, MDPI, vol. 9(14), pages 1-20, July.
- Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
- Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
- Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
- Paul R. Rosenbaum, 2023. "Sensitivity analyses informed by tests for bias in observational studies," Biometrics, The International Biometric Society, vol. 79(1), pages 475-487, March.
- Xue Gao & Xingju Cai & Deren Han, 2020. "A Gauss–Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 76(4), pages 863-887, April.
- Alexander Kononov & Yulia Zakharova, 2022. "Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion," Journal of Global Optimization, Springer, vol. 83(3), pages 539-564, July.
More about this item
Keywords
Newton method; Step length; Path-following methods; Optimal control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:94:y:2021:i:2:d:10.1007_s00186-021-00755-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.