IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/061688c6-f97c-4024-bb5b-1c81a859694d.html
   My bibliography  Save this paper

The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions

Author

Listed:
  • Abbaszadehpeivasti, Hadi

    (Tilburg University, School of Economics and Management)

  • de Klerk, Etienne

    (Tilburg University, School of Economics and Management)

  • Zamani, Moslem

    (Tilburg University, School of Economics and Management)

Abstract

No abstract is available for this item.

Suggested Citation

  • Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2022. "The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions," Other publications TiSEM 061688c6-f97c-4024-bb5b-1, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:061688c6-f97c-4024-bb5b-1c81a859694d
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/57309000/Gradient_descent_fixed_steps_v5_Moslem_Zamani_s_conflicted_copy_2021_10_06_.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Klerk, Etienne & Glineur, François & Taylor, Adrien B., 2020. "Worst-Case Convergence Analysis of Inexact Gradient and Newton Methods Through Semidefinite Programming Performance Estimation," LIDAM Reprints CORE 3134, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. DE KLERK, Etienne & GLINEUR, François & TAYLOR, Adrien B., 2016. "On the Worst-case Complexity of the Gradient Method with Exact Line Search for Smooth Strongly Convex Functions," LIDAM Discussion Papers CORE 2016027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Taylor, A. & Hendrickx, J. & Glineur, F., 2015. "Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods," LIDAM Discussion Papers CORE 2015013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    2. Hadi Abbaszadehpeivasti & Etienne Klerk & Moslem Zamani, 2024. "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 475-496, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadi Abbaszadehpeivasti & Etienne Klerk & Moslem Zamani, 2024. "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 475-496, July.
    2. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    3. Roland Hildebrand, 2021. "Optimal step length for the Newton method: case of self-concordant functions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 253-279, October.
    4. Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
    5. Guoyong Gu & Junfeng Yang, 2024. "Tight Ergodic Sublinear Convergence Rate of the Relaxed Proximal Point Algorithm for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 373-387, July.
    6. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    7. André Uschmajew & Bart Vandereycken, 2022. "A Note on the Optimal Convergence Rate of Descent Methods with Fixed Step Sizes for Smooth Strongly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 364-373, July.
    8. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Donghwan Kim & Jeffrey A. Fessler, 2017. "On the Convergence Analysis of the Optimized Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 187-205, January.
    10. Rieger, Janosch & Tam, Matthew K., 2020. "Backward-Forward-Reflected-Backward Splitting for Three Operator Monotone Inclusions," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    11. Donghwan Kim & Jeffrey A. Fessler, 2021. "Optimizing the Efficiency of First-Order Methods for Decreasing the Gradient of Smooth Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 192-219, January.
    12. Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2023. "Convergence rate analysis of randomized and cyclic coordinate descent for convex optimization through semidefinite programming," Other publications TiSEM 88512ac0-c26a-4a99-b840-3, Tilburg University, School of Economics and Management.
    13. Ernest K. Ryu & Bằng Công Vũ, 2020. "Finding the Forward-Douglas–Rachford-Forward Method," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 858-876, March.
    14. Vrins, F. & Jeanblanc, M., 2015. "The [phi]-Martingale," LIDAM Discussion Papers CORE 2015022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:061688c6-f97c-4024-bb5b-1c81a859694d. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.