IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i1d10.1007_s10957-023-02199-z.html
   My bibliography  Save this article

On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)

Author

Listed:
  • Hadi Abbaszadehpeivasti

    (Tilburg University)

  • Etienne Klerk

    (Tilburg University)

  • Moslem Zamani

    (Tilburg University)

Abstract

In this paper, we study the non-asymptotic convergence rate of the DCA (difference-of-convex algorithm), also known as the convex–concave procedure, with two different termination criteria that are suitable for smooth and non-smooth decompositions, respectively. The DCA is a popular algorithm for difference-of-convex (DC) problems and known to converge to a stationary point of the objective under some assumptions. We derive a worst-case convergence rate of $$O(1/\sqrt{N})$$ O ( 1 / N ) after N iterations of the objective gradient norm for certain classes of DC problems, without assuming strong convexity in the DC decomposition and give an example which shows the convergence rate is exact. We also provide a new convergence rate of O(1/N) for the DCA with the second termination criterion. Moreover, we derive a new linear convergence rate result for the DCA under the assumption of the Polyak–Łojasiewicz inequality. The novel aspect of our analysis is that it employs semidefinite programming performance estimation.

Suggested Citation

  • Hadi Abbaszadehpeivasti & Etienne Klerk & Moslem Zamani, 2024. "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 475-496, July.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-023-02199-z
    DOI: 10.1007/s10957-023-02199-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02199-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02199-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-023-02199-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.