IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v70y2018i3d10.1007_s10589-018-9996-z.html
   My bibliography  Save this article

Complexity of the relaxed Peaceman–Rachford splitting method for the sum of two maximal strongly monotone operators

Author

Listed:
  • Renato D. C. Monteiro

    (Georgia Institute of Technology)

  • Chee-Khian Sim

    (University of Portsmouth)

Abstract

This paper considers the relaxed Peaceman–Rachford (PR) splitting method for finding an approximate solution of a monotone inclusion whose underlying operator consists of the sum of two maximal strongly monotone operators. Using general results obtained in the setting of a non-Euclidean hybrid proximal extragradient framework, we extend a previous convergence result on the iterates generated by the relaxed PR splitting method, as well as establish new pointwise and ergodic convergence rate results for the method whenever an associated relaxation parameter is within a certain interval. An example is also discussed to demonstrate that the iterates may not converge when the relaxation parameter is outside this interval.

Suggested Citation

  • Renato D. C. Monteiro & Chee-Khian Sim, 2018. "Complexity of the relaxed Peaceman–Rachford splitting method for the sum of two maximal strongly monotone operators," Computational Optimization and Applications, Springer, vol. 70(3), pages 763-790, July.
  • Handle: RePEc:spr:coopap:v:70:y:2018:i:3:d:10.1007_s10589-018-9996-z
    DOI: 10.1007/s10589-018-9996-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-9996-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-9996-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damek Davis & Wotao Yin, 2017. "Faster Convergence Rates of Relaxed Peaceman-Rachford and ADMM Under Regularity Assumptions," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 783-805, August.
    2. M. V. Solodov & B. F. Svaiter, 2000. "An Inexact Hybrid Generalized Proximal Point Algorithm and Some New Results on the Theory of Bregman Functions," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 214-230, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    2. Chee-Khian Sim, 2023. "Convergence Rates for the Relaxed Peaceman-Rachford Splitting Method on a Monotone Inclusion Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 298-323, January.
    3. Majela Pentón Machado & Mauricio Romero Sicre, 2023. "A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 552-587, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    2. Zamani, Moslem & Abbaszadehpeivasti, Hadi & de Klerk, Etienne, 2024. "The exact worst-case convergence rate of the alternating direction method of multipliers," Other publications TiSEM f30ae9e6-ed19-423f-bd1e-0, Tilburg University, School of Economics and Management.
    3. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    4. Xiaolong Qin & Shin Kang & Yeol Cho, 2010. "Approximating zeros of monotone operators by proximal point algorithms," Journal of Global Optimization, Springer, vol. 46(1), pages 75-87, January.
    5. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    6. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    7. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    8. Naomi Graham & Hao Hu & Jiyoung Im & Xinxin Li & Henry Wolkowicz, 2022. "A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2125-2143, July.
    9. Hedy Attouch & Zaki Chbani & Jalal Fadili & Hassan Riahi, 2022. "Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 704-736, June.
    10. Maicon Marques Alves & Samara Costa Lima, 2017. "An Inexact Spingarn’s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 818-847, December.
    11. Ceng, Lu-Chuan & Yao, Jen-Chih, 2007. "Approximate proximal methods in vector optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 1-19, November.
    12. Lu-Chuan Ceng & Nicolas Hadjisavvas & Ngai-Ching Wong, 2010. "Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems," Journal of Global Optimization, Springer, vol. 46(4), pages 635-646, April.
    13. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    14. Papa Quiroz, E.A. & Mallma Ramirez, L. & Oliveira, P.R., 2015. "An inexact proximal method for quasiconvex minimization," European Journal of Operational Research, Elsevier, vol. 246(3), pages 721-729.
    15. Pauline Tan, 2018. "Linear Convergence Rates for Variants of the Alternating Direction Method of Multipliers in Smooth Cases," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 377-398, February.
    16. Chee-Khian Sim, 2023. "Convergence Rates for the Relaxed Peaceman-Rachford Splitting Method on a Monotone Inclusion Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 298-323, January.
    17. Jonathan Eckstein & Wang Yao, 2017. "Approximate ADMM algorithms derived from Lagrangian splitting," Computational Optimization and Applications, Springer, vol. 68(2), pages 363-405, November.
    18. Souza, Sissy da S. & Oliveira, P.R. & da Cruz Neto, J.X. & Soubeyran, A., 2010. "A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 201(2), pages 365-376, March.
    19. Nils Langenberg, 2012. "An Interior Proximal Method for a Class of Quasimonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 902-922, December.
    20. Jiaxin Xie, 2018. "On inexact ADMMs with relative error criteria," Computational Optimization and Applications, Springer, vol. 71(3), pages 743-765, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:70:y:2018:i:3:d:10.1007_s10589-018-9996-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.