IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v295y2020i2d10.1007_s10479-020-03811-5.html
   My bibliography  Save this article

Randomized Progressive Hedging methods for multi-stage stochastic programming

Author

Listed:
  • Gilles Bareilles

    (Univ. Grenoble Alpes)

  • Yassine Laguel

    (Univ. Grenoble Alpes)

  • Dmitry Grishchenko

    (Univ. Grenoble Alpes)

  • Franck Iutzeler

    (Univ. Grenoble Alpes)

  • Jérôme Malick

    (CNRS and LJK)

Abstract

Progressive Hedging is a popular decomposition algorithm for solving multi-stage stochastic optimization problems. A computational bottleneck of this algorithm is that all scenario subproblems have to be solved at each iteration. In this paper, we introduce randomized versions of the Progressive Hedging algorithm able to produce new iterates as soon as a single scenario subproblem is solved. Building on the relation between Progressive Hedging and monotone operators, we leverage recent results on randomized fixed point methods to derive and analyze the proposed methods. Finally, we release the corresponding code as an easy-to-use Julia toolbox and report computational experiments showing the practical interest of randomized algorithms, notably in a parallel context. Throughout the paper, we pay a special attention to presentation, stressing main ideas, avoiding extra-technicalities, in order to make the randomized methods accessible to a broad audience in the Operations Research community.

Suggested Citation

  • Gilles Bareilles & Yassine Laguel & Dmitry Grishchenko & Franck Iutzeler & Jérôme Malick, 2020. "Randomized Progressive Hedging methods for multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 295(2), pages 535-560, December.
  • Handle: RePEc:spr:annopr:v:295:y:2020:i:2:d:10.1007_s10479-020-03811-5
    DOI: 10.1007/s10479-020-03811-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03811-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03811-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Eckstein, 2017. "A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 155-182, April.
    2. Jean-Paul Watson & David Woodruff, 2011. "Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems," Computational Management Science, Springer, vol. 8(4), pages 355-370, November.
    3. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    4. R. Tyrrell Rockafellar & Johannes O. Royset, 2018. "Superquantile/CVaR risk measures: second-order theory," Annals of Operations Research, Springer, vol. 262(1), pages 3-28, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    2. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    3. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    4. Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
    5. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    6. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    7. Can Li & Ignacio E. Grossmann, 2019. "A finite $$\epsilon $$ϵ-convergence algorithm for two-stage stochastic convex nonlinear programs with mixed-binary first and second-stage variables," Journal of Global Optimization, Springer, vol. 75(4), pages 921-947, December.
    8. Fadda, Edoardo & Perboli, Guido & Tadei, Roberto, 2019. "A progressive hedging method for the optimization of social engagement and opportunistic IoT problems," European Journal of Operational Research, Elsevier, vol. 277(2), pages 643-652.
    9. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    10. Serhat Gul & Brian T. Denton & John W. Fowler, 2015. "A Progressive Hedging Approach for Surgery Planning Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 755-772, November.
    11. Poudel, Sushil Raj & Marufuzzaman, Mohammad & Bian, Linkan, 2016. "A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 1-25.
    12. Francisco Munoz & Jean-Paul Watson, 2015. "A scalable solution framework for stochastic transmission and generation planning problems," Computational Management Science, Springer, vol. 12(4), pages 491-518, October.
    13. Zhang, Qianzhi & Wang, Zhaoyu & Ma, Shanshan & Arif, Anmar, 2021. "Stochastic pre-event preparation for enhancing resilience of distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Lanza, Giacomo & Crainic, Teodor Gabriel & Rei, Walter & Ricciardi, Nicoletta, 2021. "Scheduled service network design with quality targets and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 30-46.
    15. Kabli, Mohannad & Quddus, Md Abdul & Nurre, Sarah G. & Marufuzzaman, Mohammad & Usher, John M., 2020. "A stochastic programming approach for electric vehicle charging station expansion plans," International Journal of Production Economics, Elsevier, vol. 220(C).
    16. Ellen Krohn Aasgård & Hans Ivar Skjelbred, 2020. "Progressive hedging for stochastic programs with cross-scenario inequality constraints," Computational Management Science, Springer, vol. 17(1), pages 141-160, January.
    17. Sini Han & Hyeon-Jin Kim & Duehee Lee, 2020. "A Long-Term Evaluation on Transmission Line Expansion Planning with Multistage Stochastic Programming," Energies, MDPI, vol. 13(8), pages 1-18, April.
    18. Çelik, Batuhan & Gul, Serhat & Çelik, Melih, 2023. "A stochastic programming approach to surgery scheduling under parallel processing principle," Omega, Elsevier, vol. 115(C).
    19. Pierre Carpentier & Jean-Philippe Chancelier & Michel Lara & François Pacaud, 2020. "Mixed Spatial and Temporal Decompositions for Large-Scale Multistage Stochastic Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 985-1005, September.
    20. Escudero, Laureano F. & Garín, M. Araceli & Monge, Juan F. & Unzueta, Aitziber, 2020. "Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management," European Journal of Operational Research, Elsevier, vol. 285(3), pages 988-1001.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:295:y:2020:i:2:d:10.1007_s10479-020-03811-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.