IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v190y2021i2d10.1007_s10957-021-01882-3.html
   My bibliography  Save this article

Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities

Author

Listed:
  • Zhen-Ping Yang

    (Jiaying University)

  • Gui-Hua Lin

    (Shanghai University)

Abstract

In the study of stochastic variational inequalities, the extragradient algorithms attract much attention. However, such schemes require two evaluations of the expected mapping at each iteration in general. In this paper, we present several variance-based single-call proximal extragradient algorithms for solving a class of stochastic mixed variational inequalities by aiming at alleviating the cost of an extragradient step. One salient feature of the proposed algorithms is that they require only one evaluation of the expected mapping at each iteration, and hence, the computation load may be significantly reduced. We show that the proposed algorithms can achieve sublinear ergodic convergence rate in terms of the restricted merit function. Furthermore, under the strongly Minty variational inequality condition, we derive some results related to convergence rate of the distance between iterates and solutions, the iteration and oracle complexities for the proposed algorithms when the sample size increases at a geometric or polynomial rate. Numerical experiments indicate that the proposed algorithms are quite competitive with some existing algorithms.

Suggested Citation

  • Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.
  • Handle: RePEc:spr:joptap:v:190:y:2021:i:2:d:10.1007_s10957-021-01882-3
    DOI: 10.1007/s10957-021-01882-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01882-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01882-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    2. Alfredo N. Iusem & Alejandro Jofré & Philip Thompson, 2019. "Incremental Constraint Projection Methods for Monotone Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 236-263, February.
    3. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    4. Aswin Kannan & Uday V. Shanbhag, 2019. "Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants," Computational Optimization and Applications, Springer, vol. 74(3), pages 779-820, December.
    5. Jinlong Lei & Uday V. Shanbhag & Jong-Shi Pang & Suvrajeet Sen, 2020. "On Synchronous, Asynchronous, and Randomized Best-Response Schemes for Stochastic Nash Games," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 157-190, February.
    6. B. Jadamba & F. Raciti, 2015. "Variational Inequality Approach to Stochastic Nash Equilibrium Problems with an Application to Cournot Oligopoly," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 1050-1070, June.
    7. Zhen-Ping Yang & Yuliang Wang & Gui-Hua Lin, 2020. "Variance-Based Modified Backward-Forward Algorithm with Line Search for Stochastic Variational Inequality Problems and Its Applications," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(03), pages 1-33, April.
    8. Jiří V. Outrata & Jan Valdman, 2020. "On computation of optimal strategies in oligopolistic markets respecting the cost of change," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 489-509, December.
    9. Cong Dang & Guanghui Lan, 2015. "On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators," Computational Optimization and Applications, Springer, vol. 60(2), pages 277-310, March.
    10. Jie Jiang & Xiaojun Chen & Zhiping Chen, 2020. "Quantitative analysis for a class of two-stage stochastic linear variational inequality problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 431-460, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    2. Annamaria Barbagallo & Serena Guarino Lo Bianco, 2023. "A random time-dependent noncooperative equilibrium problem," Computational Optimization and Applications, Springer, vol. 84(1), pages 27-52, January.
    3. Francesca Faraci & Baasansuren Jadamba & Fabio Raciti, 2016. "On Stochastic Variational Inequalities with Mean Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 675-693, November.
    4. Jie Jiang & Hailin Sun, 2023. "Monotonicity and Complexity of Multistage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 433-460, February.
    5. Jie Jiang & Shengjie Li, 2021. "Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 650-671, August.
    6. Xingbang Cui & Jie Sun & Liping Zhang, 2023. "On Multistage Pseudomonotone Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 363-391, October.
    7. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    8. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    9. Simone Balmelli & Francesco Moresino, 2023. "Coordination of Plug-In Electric Vehicle Charging in a Stochastic Framework: A Decentralized Tax/Incentive-Based Mechanism to Reach Global Optimality," Mathematics, MDPI, vol. 11(4), pages 1-24, February.
    10. Jie Jiang & Xiaojun Chen & Zhiping Chen, 2020. "Quantitative analysis for a class of two-stage stochastic linear variational inequality problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 431-460, June.
    11. Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.
    12. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    13. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    14. Zhang, Jie & He, Su-xiang & Wang, Quan, 2014. "A SAA nonlinear regularization method for a stochastic extended vertical linear complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 888-897.
    15. Shisheng Cui & Uday Shanbhag & Mathias Staudigl & Phan Vuong, 2022. "Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 83(2), pages 465-524, November.
    16. Yakui Huang & Hongwei Liu, 2016. "Smoothing projected Barzilai–Borwein method for constrained non-Lipschitz optimization," Computational Optimization and Applications, Springer, vol. 65(3), pages 671-698, December.
    17. Kramer, Anja & Krebs, Vanessa & Schmidt, Martin, 2021. "Strictly and Γ-robust counterparts of electricity market models: Perfect competition and Nash–Cournot equilibria," Operations Research Perspectives, Elsevier, vol. 8(C).
    18. Jinlong Lei & Uday V. Shanbhag, 2020. "Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization," Operations Research, INFORMS, vol. 68(6), pages 1742-1766, November.
    19. R. Díaz Millán & O. P. Ferreira & L. F. Prudente, 2021. "Alternating conditional gradient method for convex feasibility problems," Computational Optimization and Applications, Springer, vol. 80(1), pages 245-269, September.
    20. Xiantao Xiao, 2021. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 605-627, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:190:y:2021:i:2:d:10.1007_s10957-021-01882-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.