Smoothing projected Barzilai–Borwein method for constrained non-Lipschitz optimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-016-9854-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
- NESTEROV, Yurii, 2007. "Gauss-Newton scheme with worst case guarantees for global performance," LIDAM Reprints CORE 1952, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
- NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jinman Lv & Zhenhua Peng & Zhongping Wan, 2021. "Optimality Conditions, Qualifications and Approximation Method for a Class of Non-Lipschitz Mathematical Programs with Switching Constraints," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
- Yu-Hong Dai & Yakui Huang & Xin-Wei Liu, 2019. "A family of spectral gradient methods for optimization," Computational Optimization and Applications, Springer, vol. 74(1), pages 43-65, September.
- Tianji Wang & Qingdao Huang, 2025. "Research on Three-Dimensional Extension of Barzilai-Borwein-like Method," Mathematics, MDPI, vol. 13(2), pages 1-26, January.
- Zexian Liu & Hongwei Liu, 2019. "An Efficient Gradient Method with Approximately Optimal Stepsize Based on Tensor Model for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 608-633, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
- Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
- Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.
- Bo Wen & Xiaojun Chen & Ting Kei Pong, 2018. "A proximal difference-of-convex algorithm with extrapolation," Computational Optimization and Applications, Springer, vol. 69(2), pages 297-324, March.
- Jiaming Liang & Renato D. C. Monteiro & Chee-Khian Sim, 2021. "A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems," Computational Optimization and Applications, Springer, vol. 79(3), pages 649-679, July.
- Huynh Ngai & Ta Anh Son, 2022. "Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/k2)," Computational Optimization and Applications, Springer, vol. 83(2), pages 615-649, November.
- Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
- Donghwan Kim & Jeffrey A. Fessler, 2017. "On the Convergence Analysis of the Optimized Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 187-205, January.
- Jianqing Fan & Han Liu & Yang Ning & Hui Zou, 2017. "High dimensional semiparametric latent graphical model for mixed data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 405-421, March.
- Wang, Guoxin & Zhang, Jin & Zeng, Bo & Lin, Gui-Hua, 2018. "Expected residual minimization formulation for a class of stochastic linear second-order cone complementarity problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 437-447.
- Masaru Ito & Mituhiro Fukuda, 2021. "Nearly Optimal First-Order Methods for Convex Optimization under Gradient Norm Measure: an Adaptive Regularization Approach," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 770-804, March.
- Jian Huang & Yuling Jiao & Lican Kang & Jin Liu & Yanyan Liu & Xiliang Lu, 2022. "GSDAR: a fast Newton algorithm for $$\ell _0$$ ℓ 0 regularized generalized linear models with statistical guarantee," Computational Statistics, Springer, vol. 37(1), pages 507-533, March.
- Masoud Ahookhosh & Arnold Neumaier, 2018. "Solving structured nonsmooth convex optimization with complexity $$\mathcal {O}(\varepsilon ^{-1/2})$$ O ( ε - 1 / 2 )," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 110-145, April.
- Md Sarowar Morshed & Md Saiful Islam & Md. Noor-E-Alam, 2020. "Accelerated sampling Kaczmarz Motzkin algorithm for the linear feasibility problem," Journal of Global Optimization, Springer, vol. 77(2), pages 361-382, June.
- Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
- Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
- Chen, Le-Yu & Lee, Sokbae, 2023.
"Sparse quantile regression,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
- Le-Yu Chen & Sokbae Lee, 2020. "Sparse Quantile Regression," Papers 2006.11201, arXiv.org, revised Mar 2023.
- Le-Yu Chen & Sokbae (Simon) Lee, 2020. "Sparse Quantile Regression," CeMMAP working papers CWP30/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kimon Fountoulakis & Jacek Gondzio, 2016. "Performance of first- and second-order methods for $$\ell _1$$ ℓ 1 -regularized least squares problems," Computational Optimization and Applications, Springer, vol. 65(3), pages 605-635, December.
More about this item
Keywords
Smoothing projected Barzilai–Borwein algorithm; Constrained non-Lipschitz optimization; Nonsmooth nonconvex optimization; Smoothing approximation; $$ell _2$$ ℓ 2 - $$ell _p$$ ℓ p problem; Image restoration; Stochastic linear complementarity problem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:65:y:2016:i:3:d:10.1007_s10589-016-9854-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.