IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v83y2022i2d10.1007_s10589-022-00399-3.html
   My bibliography  Save this article

Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces

Author

Listed:
  • Shisheng Cui

    (Pennsylvania State University)

  • Uday Shanbhag

    (Pennsylvania State University)

  • Mathias Staudigl

    (Maastricht University)

  • Phan Vuong

    (University of Southampton)

Abstract

We consider monotone inclusions defined on a Hilbert space where the operator is given by the sum of a maximal monotone operator T and a single-valued monotone, Lipschitz continuous, and expectation-valued operator V. We draw motivation from the seminal work by Attouch and Cabot (Attouch in AMO 80:547–598, 2019, Attouch in MP 184: 243–287) on relaxed inertial methods for monotone inclusions and present a stochastic extension of the relaxed inertial forward–backward-forward method. Facilitated by an online variance reduction strategy via a mini-batch approach, we show that our method produces a sequence that weakly converges to the solution set. Moreover, it is possible to estimate the rate at which the discrete velocity of the stochastic process vanishes. Under strong monotonicity, we demonstrate strong convergence, and give a detailed assessment of the iteration and oracle complexity of the scheme. When the mini-batch is raised at a geometric (polynomial) rate, the rate statement can be strengthened to a linear (suitable polynomial) rate while the oracle complexity of computing an $$\epsilon $$ ϵ -solution improves to $${\mathcal {O}}(1/\epsilon )$$ O ( 1 / ϵ ) . Importantly, the latter claim allows for possibly biased oracles, a key theoretical advancement allowing for far broader applicability. By defining a restricted gap function based on the Fitzpatrick function, we prove that the expected gap of an averaged sequence diminishes at a sublinear rate of $${\mathcal {O}}(1/k)$$ O ( 1 / k ) while the oracle complexity of computing a suitably defined $$\epsilon $$ ϵ -solution is $${\mathcal {O}}(1/\epsilon ^{1+a})$$ O ( 1 / ϵ 1 + a ) where $$a > 1$$ a > 1 . Numerical results on two-stage games and an overlapping group Lasso problem illustrate the advantages of our method compared to competitors.

Suggested Citation

  • Shisheng Cui & Uday Shanbhag & Mathias Staudigl & Phan Vuong, 2022. "Stochastic relaxed inertial forward-backward-forward splitting for monotone inclusions in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 83(2), pages 465-524, November.
  • Handle: RePEc:spr:coopap:v:83:y:2022:i:2:d:10.1007_s10589-022-00399-3
    DOI: 10.1007/s10589-022-00399-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00399-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00399-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aswin Kannan & Uday V. Shanbhag, 2019. "Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants," Computational Optimization and Applications, Springer, vol. 74(3), pages 779-820, December.
    2. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    3. Duong Viet Thong & Aviv Gibali & Mathias Staudigl & Phan Tu Vuong, 2021. "Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters," Networks and Spatial Economics, Springer, vol. 21(3), pages 735-768, September.
    4. Kengy Barty & Jean-Sébastien Roy & Cyrille Strugarek, 2007. "Hilbert-Valued Perturbed Subgradient Algorithms," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 551-562, August.
    5. J. M. Borwein & J. Dutta, 2016. "Maximal Monotone Inclusions and Fitzpatrick Functions," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 757-784, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    3. Li, Houjian & Tang, Mengqian & Cao, Andi & Guo, Lili, 2024. "How to reduce firm pollution discharges: Does political leaders' gender matter?," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    4. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    5. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    6. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    7. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    8. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    9. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    11. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    12. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    13. Lee Kyu Ha & Chakraborty Sounak & Sun Jianguo, 2011. "Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, April.
    14. Butts, David J. & Thompson, Noelle E. & Christensen, Sonja A. & Williams, David M. & Murillo, Michael S., 2022. "Data-driven agent-based model building for animal movement through Exploratory Data Analysis," Ecological Modelling, Elsevier, vol. 470(C).
    15. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    16. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    17. Xiaoquan Wen, 2014. "Bayesian model selection in complex linear systems, as illustrated in genetic association studies," Biometrics, The International Biometric Society, vol. 70(1), pages 73-83, March.
    18. Yuanyuan Shen & Katherine P. Liao & Tianxi Cai, 2015. "Sparse kernel machine regression for ordinal outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 63-70, March.
    19. Phillip Heiler & Jana Mareckova, 2019. "Shrinkage for Categorical Regressors," Papers 1901.01898, arXiv.org.
    20. Lee Jaeeun & Chen Jie, 2019. "A penalized regression approach for DNA copy number study using the sequencing data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(4), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:83:y:2022:i:2:d:10.1007_s10589-022-00399-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.