IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v190y2021i2d10.1007_s10957-021-01905-z.html
   My bibliography  Save this article

Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities

Author

Listed:
  • Jie Jiang

    (Chongqing University)

  • Shengjie Li

    (Chongqing University)

Abstract

Sample average approximation (SAA) approach for two-stage stochastic variational inequalities (SVIs) with continuous probability distributions, where the second-stage problems have multiple solutions, may not promise convergence assertions as the sample size tends to infinity. In this paper, a regularized SAA approach is proposed to numerically solve a class of two-stage SVIs with continuous probability distributions, where the second-stage problems are monotone and allowed to have multiple solutions. We first give some structural properties. After that, the convergence analysis of the regularized SAA approach for two-stage SVIs is investigated as the regularization parameter tends to zero and the sample size tends to infinity. Finally, we employ the progressive hedging algorithm to report some numerical results.

Suggested Citation

  • Jie Jiang & Shengjie Li, 2021. "Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 650-671, August.
  • Handle: RePEc:spr:joptap:v:190:y:2021:i:2:d:10.1007_s10957-021-01905-z
    DOI: 10.1007/s10957-021-01905-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01905-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01905-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    2. Joachim Gwinner & Fabio Raciti, 2012. "Some equilibrium problems under uncertainty and random variational inequalities," Annals of Operations Research, Springer, vol. 200(1), pages 299-319, November.
    3. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    4. Francesca Faraci & Baasansuren Jadamba & Fabio Raciti, 2016. "On Stochastic Variational Inequalities with Mean Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 675-693, November.
    5. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    6. Jie Jiang & Xiaojun Chen & Zhiping Chen, 2020. "Quantitative analysis for a class of two-stage stochastic linear variational inequality problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 431-460, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Jiang & Hailin Sun, 2023. "Monotonicity and Complexity of Multistage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 433-460, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgia Fargetta & Antonino Maugeri & Laura Scrimali, 2022. "A Stochastic Nash Equilibrium Problem for Medical Supply Competition," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 354-380, June.
    2. Jie Jiang & Hailin Sun, 2023. "Monotonicity and Complexity of Multistage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 433-460, February.
    3. Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.
    4. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    5. A. Causa & B. Jadamba & F. Raciti, 2017. "A migration equilibrium model with uncertain data and movement costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 159-175, November.
    6. B. Jadamba & F. Raciti, 2015. "Variational Inequality Approach to Stochastic Nash Equilibrium Problems with an Application to Cournot Oligopoly," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 1050-1070, June.
    7. Francesca Faraci & Baasansuren Jadamba & Fabio Raciti, 2016. "On Stochastic Variational Inequalities with Mean Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 675-693, November.
    8. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    9. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    10. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    11. Xin Huang & Duan Li & Daniel Zhuoyu Long, 2020. "Scenario-decomposition Solution Framework for Nonseparable Stochastic Control Problems," Papers 2010.08985, arXiv.org.
    12. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    13. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    14. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    15. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    16. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    17. Kevin Ryan & Shabbir Ahmed & Santanu S. Dey & Deepak Rajan & Amelia Musselman & Jean-Paul Watson, 2020. "Optimization-Driven Scenario Grouping," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 805-821, July.
    18. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    19. Listes, O.L. & Dekker, R., 2002. "A scenario aggregation based approach for determining a robust airline fleet composition," Econometric Institute Research Papers EI 2002-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Teemu Pennanen & Markku Kallio, 2006. "A splitting method for stochastic programs," Annals of Operations Research, Springer, vol. 142(1), pages 259-268, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:190:y:2021:i:2:d:10.1007_s10957-021-01905-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.