IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921006184.html
   My bibliography  Save this article

Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type

Author

Listed:
  • Kavitha, K.
  • Vijayakumar, V.
  • Shukla, Anurag
  • Nisar, Kottakkaran Sooppy
  • Udhayakumar, R.

Abstract

The basic motivation of this research paper is the approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type which generalized the Riemann-Liouville fractional derivative. Combining with the techniques of fractional calculus, fixed point theorem for multi-value dmaps and Sobolev-type and Clarke subdifferential to the approximate controllability system we obtain new existence result of mild solutions. Next, we demonstrate linear and semilinear systems for approximate controllability. Finally, to verify our theoretical results, an illustration is also included.

Suggested Citation

  • Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006184
    DOI: 10.1016/j.chaos.2021.111264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vijayakumar, V. & Udhayakumar, R., 2020. "Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Lu, Liang & Liu, Zhenhai & Bin, Maojun, 2016. "Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 201-212.
    3. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Michal Fec̆kan & JinRong Wang & Yong Zhou, 2013. "Controllability of Fractional Functional Evolution Equations of Sobolev Type via Characteristic Solution Operators," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 79-95, January.
    6. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Asmae Tajani & Fatima-Zahrae El Alaoui, 2023. "Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 767-780, August.
    4. Kalimuthu, K. & Mohan, M. & Chokkalingam, R. & Nisar, Kottakkaran Sooppy, 2022. "Results on neutral differential equation of sobolev type with nonlocal conditions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Zhang, Chuanlin & Ye, Guoju & Liu, Wei & Liu, Xuelong, 2024. "On controllability for Sobolev-type fuzzy Hilfer fractional integro-differential inclusions with Clarke subdifferential," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R. & Zhou, Yong, 2020. "A new approach on the approximate controllability of fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Velmurugan Subramanian & Ghada AlNemer & Ahmed M. Elshenhab, 2022. "Existence of Hilfer Fractional Stochastic Differential Equations with Nonlocal Conditions and Delay via Almost Sectorial Operators," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    5. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Gautam, Pooja & Shukla, Anurag, 2023. "Stochastic controllability of semilinear fractional control differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Nisar, Kottakkaran Sooppy & Jothimani, K. & Kaliraj, K. & Ravichandran, C., 2021. "An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Sivajiganesan Sivasankar & Ramalingam Udhayakumar & Muchenedi Hari Kishor & Sharifah E. Alhazmi & Shrideh Al-Omari, 2022. "A New Result Concerning Nonlocal Controllability of Hilfer Fractional Stochastic Differential Equations via almost Sectorial Operators," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    12. Yang Wang & Yongyang Liu & Yansheng Liu, 2022. "Total Controllability of Non-Autonomous Measure Evolution Systems with Non-Instantaneous Impulses and State-Dependent Delay," Mathematics, MDPI, vol. 10(15), pages 1-15, July.
    13. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Derivatives," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
    14. Ravichandran, C. & Sowbakiya, V. & Nisar, Kottakkaran Sooppy, 2022. "Study on existence and data dependence results for fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Nazim I. Mahmudov, 2020. "Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 671-686, February.
    16. Dhayal, Rajesh & Zhu, Quanxin, 2023. "Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Selvam, Anjapuli Panneer & Govindaraj, Venkatesan & Ahmad, Hijaz, 2024. "Examining reachability criteria for fractional dynamical systems with mixed delays in control utilizing ψ-Hilfer pseudo-fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Thitiporn Linitda & Kulandhaivel Karthikeyan & Palanisamy Raja Sekar & Thanin Sitthiwirattham, 2023. "Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    19. Asmae Tajani & Fatima-Zahrae El Alaoui, 2023. "Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 767-780, August.
    20. Panda, Sumati Kumari & Nagy, A.M. & Vijayakumar, Velusamy & Hazarika, Bipan, 2023. "Stability analysis for complex-valued neural networks with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.