IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v174y2017i1d10.1007_s10957-016-0954-6.html
   My bibliography  Save this article

On the Existence and Continuous Dependence on Parameter of Solutions to Some Fractional Dirichlet Problem with Application to Lagrange Optimal Control Problem

Author

Listed:
  • Rafał Kamocki

    (University of Lodz)

  • Marek Majewski

    (University of Lodz)

Abstract

In the paper, a Lagrange optimal control problem governed by a fractional Dirichlet problem with the Riemann–Liouville derivative is considered. To begin with, based on some variational method, the existence and continuous dependence of solution to the aforementioned Dirichlet problem is investigated. Then, continuous dependence is applied to show the existence of optimal solution to the Lagrange problem. An important point is that the solution to Dirichlet problem does need to be unique; therefore, the above dependence should be understood as a continuity of some multifunction—the concept of the Kuratowski–Painlevé limit of the sequence of sets is used to formulate this property.

Suggested Citation

  • Rafał Kamocki & Marek Majewski, 2017. "On the Existence and Continuous Dependence on Parameter of Solutions to Some Fractional Dirichlet Problem with Application to Lagrange Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 32-46, July.
  • Handle: RePEc:spr:joptap:v:174:y:2017:i:1:d:10.1007_s10957-016-0954-6
    DOI: 10.1007/s10957-016-0954-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0954-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0954-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shkelzen Cakaj (ed.), 2010. "Modeling Simulation and Optimization - Tolerance and Optimal Control," Books, IntechOpen, number 707, January-J.
    2. JinRong Wang & Michal Fec̆kan & Yong Zhou, 2013. "Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 13-32, January.
    3. Tian Liang Guo, 2013. "The Necessary Conditions of Fractional Optimal Control in the Sense of Caputo," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 115-126, January.
    4. Michal Fec̆kan & JinRong Wang & Yong Zhou, 2013. "Controllability of Fractional Functional Evolution Equations of Sobolev Type via Characteristic Solution Operators," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 79-95, January.
    5. Blaszczyk, Tomasz & Ciesielski, Mariusz, 2015. "Fractional oscillator equation – Transformation into integral equation and numerical solution," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 428-435.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Surendra Kumar, 2017. "Mild Solution and Fractional Optimal Control of Semilinear System with Fixed Delay," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 108-121, July.
    2. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    3. Kumar, Vipin & Malik, Muslim & Debbouche, Amar, 2021. "Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    4. Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
    5. shu, Xiao-Bao & Shi, Yajing, 2016. "A study on the mild solution of impulsive fractional evolution equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 465-476.
    6. Revathi, P. & Sakthivel, R. & Ren, Yong, 2016. "Stochastic functional differential equations of Sobolev-type with infinite delay," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 68-77.
    7. Nazim I. Mahmudov, 2020. "Variational Approach to Finite-Approximate Controllability of Sobolev-Type Fractional Systems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 671-686, February.
    8. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.
    10. Ali Lotfi, 2017. "A Combination of Variational and Penalty Methods for Solving a Class of Fractional Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 65-82, July.
    11. Chongyang Liu & Zhaohua Gong & Changjun Yu & Song Wang & Kok Lay Teo, 2021. "Optimal Control Computation for Nonlinear Fractional Time-Delay Systems with State Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 83-117, October.
    12. Yan, Zuomao & Lu, Fangxia, 2017. "Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 425-447.
    13. Dumitru Baleanu & Amin Jajarmi & Mojtaba Hajipour, 2017. "A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 718-737, December.
    14. Yao-Qun Wu & Jia Wei He, 2022. "Existence and Optimal Controls for Hilfer Fractional Sobolev-Type Stochastic Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 79-101, October.
    15. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "A Fractional Ordered COVID-19 Model Incorporating Comorbidity and Vaccination," Mathematics, MDPI, vol. 9(21), pages 1-27, November.
    16. Shengda Liu & JinRong Wang, 2017. "Optimal Controls of Systems Governed by Semilinear Fractional Differential Equations with Not Instantaneous Impulses," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 455-473, August.
    17. Alka Chadha & Dwijendra N. Pandey, 2018. "Approximate Controllability of a Neutral Stochastic Fractional Integro-Differential Inclusion with Nonlocal Conditions," Journal of Theoretical Probability, Springer, vol. 31(2), pages 705-740, June.
    18. Tirumalasetty Chiranjeevi & Raj Kumar Biswas, 2017. "Discrete-Time Fractional Optimal Control," Mathematics, MDPI, vol. 5(2), pages 1-12, April.
    19. Amar Debbouche & Juan J. Nieto & Delfim F. M. Torres, 2017. "Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type with Nonlocal Nonlinear Fractional Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 7-31, July.
    20. JinRong Wang & Michal Fečkan & Amar Debbouche, 2019. "Time Optimal Control of a System Governed by Non-instantaneous Impulsive Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 573-587, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:174:y:2017:i:1:d:10.1007_s10957-016-0954-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.