IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v20y2023i1d10.1007_s10287-023-00461-3.html
   My bibliography  Save this article

On quasidifferentiable mathematical programs with equilibrium constraints

Author

Listed:
  • Vivek Laha

    (Banaras Hindu University)

  • Harsh Narayan Singh

    (Banaras Hindu University)

Abstract

The aim of this article is to study mathematical programs with equilibrium constraints involving quasidifferentiable functions, denoted by QMPEC, and to synthesize suitable optimality conditions. We first derive Fritz-John (FJ) necessary optimality conditions with Lagrange multipliers depending upon the choice of superdifferentials. We introduce a suitable variant of no nonzero abnormal multiplier constraint qualification for the QMPEC, denoted by NNAMCQ-QMPEC, and derive Karush–Kuhn–Tucker (KKT) necessary optimality conditions. We also propose some conditions under which the Lagrange multipliers do not depend upon the choice of superdifferentials. Further, we prove several sufficient optimality conditions for a weak stationary point to be optimal for the QMPEC under suitable choice of generalized convex functions.

Suggested Citation

  • Vivek Laha & Harsh Narayan Singh, 2023. "On quasidifferentiable mathematical programs with equilibrium constraints," Computational Management Science, Springer, vol. 20(1), pages 1-20, December.
  • Handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00461-3
    DOI: 10.1007/s10287-023-00461-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00461-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00461-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Guo & Gui-Hua Lin, 2013. "Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 600-616, March.
    2. S. Nobakhtian, 2006. "Sufficiency in Nonsmooth Multiobjective Programming Involving Generalized (Fρ)-convexity," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 361-367, August.
    3. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    4. T. Antczak, 2016. "Optimality Conditions in Quasidifferentiable Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 708-725, November.
    5. S. K. Mishra & Vivek Laha, 2013. "On Approximately Star-Shaped Functions and Approximate Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 278-293, February.
    6. Majid E. Abbasov, 2017. "Comparison Between Quasidifferentials and Exhausters," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 59-75, October.
    7. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.
    2. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    3. Alireza Kabgani, 2021. "Characterization of Nonsmooth Quasiconvex Functions and their Greenberg–Pierskalla’s Subdifferentials Using Semi-Quasidifferentiability notion," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 666-678, May.
    4. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    5. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
    6. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    7. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    8. Xu, Jiuping & Shu, Kejing & Wang, Fengjuan & Yang, Guocan, 2024. "Bi-level multi-objective distribution strategy integrating the permit trading scheme towards coal production capacity layout optimization: Case study from China," Resources Policy, Elsevier, vol. 91(C).
    9. Cerulli, Martina & Serra, Domenico & Sorgente, Carmine & Archetti, Claudia & Ljubić, Ivana, 2023. "Mathematical programming formulations for the Collapsed k-Core Problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 56-72.
    10. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    11. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    12. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    13. Wei Jiang & Huiqiang Wang & Bingyang Li & Haibin Lv & Qingchuan Meng, 2020. "A multi-user multi-operator computing pricing method for Internet of things based on bi-level optimization," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477199, January.
    14. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    15. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    16. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    17. Magnus Hoffmann & Grégoire Rota‐Graziosi, 2020. "Endogenous timing in the presence of non‐monotonicities," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 359-402, February.
    18. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    19. Tadeusz Antczak, 2023. "On directionally differentiable multiobjective programming problems with vanishing constraints," Annals of Operations Research, Springer, vol. 328(2), pages 1181-1212, September.
    20. Baringo, L. & Conejo, A.J., 2011. "Wind power investment within a market environment," Applied Energy, Elsevier, vol. 88(9), pages 3239-3247.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00461-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.