IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i1p19-35.html
   My bibliography  Save this article

Clusterwise support vector linear regression

Author

Listed:
  • Joki, Kaisa
  • Bagirov, Adil M.
  • Karmitsa, Napsu
  • Mäkelä, Marko M.
  • Taheri, Sona

Abstract

In clusterwise linear regression (CLR), the aim is to simultaneously partition data into a given number of clusters and to find regression coefficients for each cluster. In this paper, we propose a novel approach to model and solve the CLR problem. The main idea is to utilize the support vector machine (SVM) approach to model the CLR problem by using the SVM for regression to approximate each cluster. This new formulation of the CLR problem is represented as an unconstrained nonsmooth optimization problem, where we minimize a difference of two convex (DC) functions. To solve this problem, a method based on the combination of the incremental algorithm and the double bundle method for DC optimization is designed. Numerical experiments are performed to validate the reliability of the new formulation for CLR and the efficiency of the proposed method. The results show that the SVM approach is suitable for solving CLR problems, especially, when there are outliers in data.

Suggested Citation

  • Joki, Kaisa & Bagirov, Adil M. & Karmitsa, Napsu & Mäkelä, Marko M. & Taheri, Sona, 2020. "Clusterwise support vector linear regression," European Journal of Operational Research, Elsevier, vol. 287(1), pages 19-35.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:19-35
    DOI: 10.1016/j.ejor.2020.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720303830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    2. Preda, C. & Saporta, G., 2005. "Clusterwise PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 99-108, April.
    3. Young Woong Park & Yan Jiang & Diego Klabjan & Loren Williams, 2017. "Algorithms for Generalized Clusterwise Linear Regression," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 301-317, May.
    4. Carbonneau, Réal A. & Caporossi, Gilles & Hansen, Pierre, 2011. "Globally optimal clusterwise regression by mixed logical-quadratic programming," European Journal of Operational Research, Elsevier, vol. 212(1), pages 213-222, July.
    5. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    6. Strekalovsky, Alexander S., 2015. "On local search in d.c. optimization problems," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 73-83.
    7. Wayne DeSarbo & Richard Oliver & Arvind Rangaswamy, 1989. "A simulated annealing methodology for clusterwise linear regression," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 707-736, September.
    8. R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
    9. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    10. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    11. Lau, Kin-nam & Leung, Pui-lam & Tse, Ka-kit, 1999. "A mathematical programming approach to clusterwise regression model and its extensions," European Journal of Operational Research, Elsevier, vol. 116(3), pages 640-652, August.
    12. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    13. García-Escudero, L.A. & Gordaliza, A. & Mayo-Iscar, A. & San Martín, R., 2010. "Robust clusterwise linear regression through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3057-3069, December.
    14. Adil Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2014. "Introduction to Nonsmooth Optimization," Springer Books, Springer, edition 127, number 978-3-319-08114-4, December.
    15. Preda, C. & Saporta, G., 2005. "PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 149-158, January.
    16. Bagirov, Adil M. & Ugon, Julien & Mirzayeva, Hijran, 2013. "Nonsmooth nonconvex optimization approach to clusterwise linear regression problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 132-142.
    17. Dimitris Bertsimas & Romy Shioda, 2007. "Classification and Regression via Integer Optimization," Operations Research, INFORMS, vol. 55(2), pages 252-271, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
    2. Liang, Xijun & Zhang, Zhipeng & Song, Yunquan & Jian, Ling, 2022. "Kernel-based online regression with canal loss," European Journal of Operational Research, Elsevier, vol. 297(1), pages 268-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    2. Bagirov, Adil M. & Ugon, Julien & Mirzayeva, Hijran, 2013. "Nonsmooth nonconvex optimization approach to clusterwise linear regression problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 132-142.
    3. D'Urso, Pierpaolo & Santoro, Adriana, 2006. "Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 287-313, November.
    4. Réal Carbonneau & Gilles Caporossi & Pierre Hansen, 2014. "Globally Optimal Clusterwise Regression By Column Generation Enhanced with Heuristics, Sequencing and Ending Subset Optimization," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 219-241, July.
    5. Stéphanie Bougeard & Hervé Abdi & Gilbert Saporta & Ndèye Niang, 2018. "Clusterwise analysis for multiblock component methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 285-313, June.
    6. Young Woong Park & Yan Jiang & Diego Klabjan & Loren Williams, 2017. "Algorithms for Generalized Clusterwise Linear Regression," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 301-317, May.
    7. Xavier Bry & Ndèye Niang & Thomas Verron & Stéphanie Bougeard, 2023. "Clusterwise elastic-net regression based on a combined information criterion," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 75-107, March.
    8. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    9. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2013. "Clustering and classification via cluster-weighted factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 5-40, March.
    10. M. V. Dolgopolik, 2020. "New global optimality conditions for nonsmooth DC optimization problems," Journal of Global Optimization, Springer, vol. 76(1), pages 25-55, January.
    11. Jan-Michael Becker & Christian Ringle & Marko Sarstedt & Franziska Völckner, 2015. "How collinearity affects mixture regression results," Marketing Letters, Springer, vol. 26(4), pages 643-659, December.
    12. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    13. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
    14. Wan-Lun Wang & Yu-Chen Yang & Tsung-I Lin, 2024. "Extending finite mixtures of nonlinear mixed-effects models with covariate-dependent mixing weights," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 271-307, June.
    15. Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    16. Carbonneau, Réal A. & Caporossi, Gilles & Hansen, Pierre, 2011. "Globally optimal clusterwise regression by mixed logical-quadratic programming," European Journal of Operational Research, Elsevier, vol. 212(1), pages 213-222, July.
    17. Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
    18. Rainer Schlittgen, 2011. "A weighted least-squares approach to clusterwise regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 205-217, June.
    19. Tom Frans Wilderjans & Eva Gaer & Henk A. L. Kiers & Iven Mechelen & Eva Ceulemans, 2017. "Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 86-111, March.
    20. Mirfarah, Elham & Naderi, Mehrdad & Chen, Ding-Geng, 2021. "Mixture of linear experts model for censored data: A novel approach with scale-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:19-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.