IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i2d10.1007_s10957-014-0535-5.html
   My bibliography  Save this article

Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure

Author

Listed:
  • Behnam Soleimani

    (Martin-Luther-University Halle-Wittenberg)

Abstract

In this paper, we deal with approximate solutions in vector-optimization problems with respect to a variable order structure. In the case of exact solutions of a vector optimization problem, especially in the variable order case, authors use a cone or a pointed convex cone-valued map in order to describe the solution concepts but in this paper, we use a set-valued map and this map is not a (pointed convex) cone-valued map necessarily. We characterize these solution concepts by a general scalarization method by means of nonlinear functionals. In the last section, an extension of Ekeland’s variational principle for a vector optimization problem with a variable order structure is given.

Suggested Citation

  • Behnam Soleimani, 2014. "Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 605-632, August.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-014-0535-5
    DOI: 10.1007/s10957-014-0535-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0535-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0535-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
    2. Refail Kasimbeyli, 2013. "A conic scalarization method in multi-objective optimization," Journal of Global Optimization, Springer, vol. 56(2), pages 279-297, June.
    3. Gabriele Eichfelder, 2011. "Optimal Elements in Vector Optimization with a Variable Ordering Structure," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 217-240, November.
    4. Huang, N.J. & Yang, X.Q. & Chan, W.K., 2007. "Vector complementarity problems with a variable ordering relation," European Journal of Operational Research, Elsevier, vol. 176(1), pages 15-26, January.
    5. G. Y. Chen & X. X. Huang & G. M. Lee, 1999. "Equivalents of an approximate variational principle for vector-valued functions and applications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(1), pages 125-136, March.
    6. Guang Ya Chen & X. X. Huang, 1998. "Ekeland's ε-variational principle for set-valued mappings," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 181-186, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glaydston Carvalho Bento & Gemayqzel Bouza Allende & Yuri Rafael Leite Pereira, 2018. "A Newton-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 201-221, April.
    2. M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
    3. Shokouh Shahbeyk & Majid Soleimani-damaneh & Refail Kasimbeyli, 2018. "Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure," Journal of Global Optimization, Springer, vol. 71(2), pages 383-405, June.
    4. Bettina Zargini, 2022. "Multiobjective Location Problems with Variable Domination Structures and an Application to Select a New Hub Airport," Logistics, MDPI, vol. 6(2), pages 1-13, March.
    5. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part I: Set Relations and Relationship to Vector Approach," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 931-946, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Eichfelder & Refail Kasimbeyli, 2014. "Properly optimal elements in vector optimization with variable ordering structures," Journal of Global Optimization, Springer, vol. 60(4), pages 689-712, December.
    2. Shokouh Shahbeyk & Majid Soleimani-damaneh & Refail Kasimbeyli, 2018. "Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure," Journal of Global Optimization, Springer, vol. 71(2), pages 383-405, June.
    3. Elena-Andreea Florea, 2018. "Vector Optimization Problems with Generalized Functional Constraints in Variable Ordering Structure Setting," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 94-118, July.
    4. T. Q. Bao & B. S. Mordukhovich & A. Soubeyran, 2015. "Variational Analysis in Psychological Modeling," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 290-315, January.
    5. Gabriele Eichfelder, 2011. "Optimal Elements in Vector Optimization with a Variable Ordering Structure," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 217-240, November.
    6. Christian Sommer, 2014. "Geometrical and Topological Properties of a Parameterized Binary Relation in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 815-840, December.
    7. Nergiz Kasimbeyli, 2015. "Existence and characterization theorems in nonconvex vector optimization," Journal of Global Optimization, Springer, vol. 62(1), pages 155-165, May.
    8. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    9. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part II: Scalarization Approaches," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 947-963, December.
    10. T. X. D. Ha, 2005. "Some Variants of the Ekeland Variational Principle for a Set-Valued Map," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 187-206, January.
    11. Jia-Wei Chen & Zhongping Wan & Yeol Cho, 2013. "Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 33-64, February.
    12. Brian Dandurand & Margaret M. Wiecek, 2016. "Quadratic scalarization for decomposed multiobjective optimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 1071-1096, October.
    13. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    14. Jinxia Cen & Tahar Haddad & Van Thien Nguyen & Shengda Zeng, 2022. "Simultaneous distributed-boundary optimal control problems driven by nonlinear complementarity systems," Journal of Global Optimization, Springer, vol. 84(3), pages 783-805, November.
    15. S. Li & M. Li, 2009. "Levitin–Polyak well-posedness of vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 125-140, March.
    16. Suhel Ahmad Khan & Naeem Ahmad, 2013. "Existence Results for Vector Mixed Quasi-Complementarity Problems," Journal of Mathematics, Hindawi, vol. 2013, pages 1-6, February.
    17. Bettina Zargini, 2022. "Multiobjective Location Problems with Variable Domination Structures and an Application to Select a New Hub Airport," Logistics, MDPI, vol. 6(2), pages 1-13, March.
    18. X. X. Huang, 2001. "Pointwise Well-Posedness of Perturbed Vector Optimization Problems in a Vector-Valued Variational Principle," Journal of Optimization Theory and Applications, Springer, vol. 108(3), pages 671-684, March.
    19. N. J. Huang & J. Li & J. C. Yao, 2007. "Gap Functions and Existence of Solutions for a System of Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 201-212, May.
    20. F. Giannessi & G. Mastroeni & X. Yang, 2012. "Survey on Vector Complementarity Problems," Journal of Global Optimization, Springer, vol. 53(1), pages 53-67, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-014-0535-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.