IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v53y2012i2p271-284.html
   My bibliography  Save this article

Generalized vector variational-like inequalities and vector optimization

Author

Listed:
  • Qamrul Ansari
  • Mahboubeh Rezaie
  • Jafar Zafarani

Abstract

No abstract is available for this item.

Suggested Citation

  • Qamrul Ansari & Mahboubeh Rezaie & Jafar Zafarani, 2012. "Generalized vector variational-like inequalities and vector optimization," Journal of Global Optimization, Springer, vol. 53(2), pages 271-284, June.
  • Handle: RePEc:spr:jglopt:v:53:y:2012:i:2:p:271-284
    DOI: 10.1007/s10898-011-9686-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9686-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9686-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Q. H. Ansari & G. M. Lee, 2010. "Nonsmooth Vector Optimization Problems and Minty Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 1-16, April.
    2. X. M. Yang & X. Q. Yang & K. L. Teo, 2004. "Some Remarks on the Minty Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 193-201, April.
    3. X.M. Yang & X.Q. Yang & K.L. Teo, 2003. "Generalized Invexity and Generalized Invariant Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 607-625, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gutiérrez, C. & Jiménez, B. & Novo, V. & Ruiz-Garzón, G., 2015. "Efficiency through variational-like inequalities with Lipschitz functions," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 438-449.
    2. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni P. Crespi & Matteo Rocca & Carola Schrage, 2015. "Variational Inequalities Characterizing Weak Minimality in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 804-824, September.
    2. Giovanni P. Crespi & Carola Schrage, 2021. "Applying set optimization to weak efficiency," Annals of Operations Research, Springer, vol. 296(1), pages 779-801, January.
    3. S. Al-Homidan & Q. H. Ansari, 2010. "Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 1-11, January.
    4. Syed Shakaib Irfan & Mijanur Rahaman & Iqbal Ahmad & Rais Ahmad & Saddam Husain, 2019. "Generalized Nonsmooth Exponential-Type Vector Variational-Like Inequalities and Nonsmooth Vector Optimization Problems in Asplund Spaces," Mathematics, MDPI, vol. 7(4), pages 1-11, April.
    5. M. Oveisiha & J. Zafarani, 2012. "Vector optimization problem and generalized convexity," Journal of Global Optimization, Springer, vol. 52(1), pages 29-43, January.
    6. Muhammad Bilal Khan & Gustavo Santos-García & Muhammad Aslam Noor & Mohamed S. Soliman, 2022. "New Class of Preinvex Fuzzy Mappings and Related Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    7. Ya-Ping Fang & Rong Hu, 2007. "Estimates of approximate solutions and well-posedness for variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 281-291, April.
    8. Ren-you Zhong & Nan-jing Huang, 2010. "Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 454-472, December.
    9. M. Soleimani-damaneh, 2012. "Characterizations and applications of generalized invexity and monotonicity in Asplund spaces," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 592-613, October.
    10. Zaiyun Peng & Yawei Liu & X. J. Long, 2009. "Remarks on New Properties of Preinvex Functions," Modern Applied Science, Canadian Center of Science and Education, vol. 3(11), pages 1-11, November.
    11. D. L. Zhu & L. L. Zhu & Q. Xu, 2008. "Generalized Invex Monotonicity and Its Role in Solving Variational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 453-464, May.
    12. Q. H. Ansari & G. M. Lee, 2010. "Nonsmooth Vector Optimization Problems and Minty Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 1-16, April.
    13. Xiao-bo Li & Fu-quan Xia, 2013. "Hadamard well-posedness of a general mixed variational inequality in Banach space," Journal of Global Optimization, Springer, vol. 56(4), pages 1617-1629, August.
    14. Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some quantum integral inequalities via preinvex functions," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 242-251.
    15. X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
    16. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "Increase-along-rays property for vector functions," Economics and Quantitative Methods qf04015, Department of Economics, University of Insubria.
    17. Li, X.B. & Li, S.J., 2014. "Hölder continuity of perturbed solution set for convex optimization problems," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 908-918.
    18. Yang, X. M. & Yang, X. Q. & Teo, K. L., 2005. "Criteria for generalized invex monotonicities," European Journal of Operational Research, Elsevier, vol. 164(1), pages 115-119, July.
    19. M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
    20. Constantin Zălinescu, 2014. "A Critical View on Invexity," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 695-704, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:53:y:2012:i:2:p:271-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.