IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v113y2002i2d10.1023_a1014830925232.html
   My bibliography  Save this article

On the Stability of Generalized Vector Quasivariational Inequality Problems

Author

Listed:
  • S.J. Li

    (Chongqing University)

  • G.Y. Chen

    (Institute of Systems Science)

  • K.L. Teo

    (Hong Kong Polytechnic University)

Abstract

In this paper, we obtain some stability results for generalized vector quasivariational inequality problems. We prove that the solution set is a closed set and establish the upper semicontinuity property of the solution set for perturbed generalized vector quasivariational inequality problems. These results extend those obtained in Ref. 1. We obtain also the lower semicontinuity property of the solution set for perturbed classical variational inequalities. Several examples are given for the illustration of our results.

Suggested Citation

  • S.J. Li & G.Y. Chen & K.L. Teo, 2002. "On the Stability of Generalized Vector Quasivariational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(2), pages 283-295, May.
  • Handle: RePEc:spr:joptap:v:113:y:2002:i:2:d:10.1023_a:1014830925232
    DOI: 10.1023/A:1014830925232
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1014830925232
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1014830925232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. Q. Yang & C. J. Goh, 1997. "On Vector Variational Inequalities: Application to Vector Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 431-443, November.
    2. Stella Dafermos, 1988. "Sensitivity Analysis in Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 13(3), pages 421-434, August.
    3. K. L. Lin & D. P. Yang & J. C. Yao, 1997. "Generalized Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 117-125, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. R. Chen & S. J. Li, 2013. "Semicontinuity Results on Parametric Vector Variational Inequalities with Polyhedral Constraint Sets," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 97-108, July.
    2. L. Q. Anh & P. Q. Khanh, 2007. "On the Stability of the Solution Sets of General Multivalued Vector Quasiequilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 271-284, November.
    3. Massimiliano Giuli, 2013. "Closedness of the Solution Map in Quasivariational Inequalities of Ky Fan Type," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 130-144, July.
    4. X. H. Gong & J. C. Yao, 2008. "Lower Semicontinuity of the Set of Efficient Solutions for Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 197-205, August.
    5. P. Q. Khanh & L. M. Luu, 2007. "Lower Semicontinuity and Upper Semicontinuity of the Solution Sets and Approximate Solution Sets of Parametric Multivalued Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 329-339, June.
    6. Ren-you Zhong & Nan-jing Huang, 2011. "Lower Semicontinuity for Parametric Weak Vector Variational Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 317-326, August.
    7. Lam Anh & Phan Khanh, 2010. "Continuity of solution maps of parametric quasiequilibrium problems," Journal of Global Optimization, Springer, vol. 46(2), pages 247-259, February.
    8. Li, S.J. & Chen, C.R. & Li, X.B. & Teo, K.L., 2011. "Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems," European Journal of Operational Research, Elsevier, vol. 210(2), pages 148-157, April.
    9. X. H. Gong, 2008. "Continuity of the Solution Set to Parametric Weak Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 35-46, October.
    10. Ren-you Zhong & Nan-jing Huang, 2011. "Lower Semicontinuity for Parametric Weak Vector Variational Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 564-579, June.
    11. Xing Wang & Nan-Jing Huang, 2013. "Differential Vector Variational Inequalities in Finite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 109-129, July.
    12. Li, S.J. & Li, X.B. & Wang, L.N. & Teo, K.L., 2009. "The Hölder continuity of solutions to generalized vector equilibrium problems," European Journal of Operational Research, Elsevier, vol. 199(2), pages 334-338, December.
    13. M. Lignola & Jacqueline Morgan, 2012. "Approximate values for mathematical programs with variational inequality constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 485-503, October.
    14. S. Li & H. Liu & Y. Zhang & Z. Fang, 2013. "Continuity of the solution mappings to parametric generalized strong vector equilibrium problems," Journal of Global Optimization, Springer, vol. 55(3), pages 597-610, March.
    15. Ren-you Zhong & Nan-jing Huang, 2010. "Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 454-472, December.
    16. J. Morgan & M. Romaniello, 2006. "Scalarization and Kuhn-Tucker-Like Conditions for Weak Vector Generalized Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 309-316, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Tuan & Gue Lee & Pham Sach, 2010. "Upper semicontinuity result for the solution mapping of a mixed parametric generalized vector quasiequilibrium problem with moving cones," Journal of Global Optimization, Springer, vol. 47(4), pages 639-660, August.
    2. Y. Chiang & J. C. Yao, 2004. "Vector Variational Inequalities and the (S)+ Condition," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 271-290, November.
    3. T. Jabarootian & J. Zafarani, 2008. "Generalized Vector Variational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 15-30, January.
    4. Lu-Chuan Ceng & Shuechin Huang, 2010. "Existence theorems for generalized vector variational inequalities with a variable ordering relation," Journal of Global Optimization, Springer, vol. 46(4), pages 521-535, April.
    5. Ren-you Zhong & Zhen Dou & Jiang-hua Fan, 2015. "Degree Theory and Solution Existence of Set-Valued Vector Variational Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 527-549, November.
    6. Yunan Wu & Yuchen Peng & Long Peng & Ling Xu, 2012. "Super Efficiency of Multicriterion Network Equilibrium Model and Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 485-496, May.
    7. Tan Miller & Terry Friesz & Roger Tobin & Changhyun Kwon, 2007. "Reaction Function Based Dynamic Location Modeling in Stackelberg–Nash–Cournot Competition," Networks and Spatial Economics, Springer, vol. 7(1), pages 77-97, March.
    8. B. Djafari Rouhani & B. Ahmadi Kakavandi, 2006. "Infinite Time-Dependent Network Equilibria with a Multivalued Cost Function," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 405-415, December.
    9. M. A. Noor, 1997. "Sensitivity Analysis for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 399-407, November.
    10. S. J. Li & S. H. Hou & G. Y. Chen, 2005. "Generalized Differential Properties of the Auslender Gap Function for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 739-749, March.
    11. N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
    12. Q. H. Ansari & J> C> Yao, 2000. "On Nondifferentiable and Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 475-488, September.
    13. Sonia & Ratna Dev Sarma, 2023. "A topological approach for vector quasi-variational inequalities with set-valued functions," Computational Management Science, Springer, vol. 20(1), pages 1-13, December.
    14. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    15. Rosa Camps & Xavier Mora & Laia Saumell, 2013. "A continuous rating method for preferential voting. The incomplete case," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 1111-1142, April.
    16. Y. P. Fang & N. J. Huang, 2006. "Feasibility and Solvability for Vector Complementarity Problems1," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 373-390, June.
    17. G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
    18. Mircea Balaj, 2021. "Intersection theorems for generalized weak KKM set‐valued mappings with applications in optimization," Mathematische Nachrichten, Wiley Blackwell, vol. 294(7), pages 1262-1276, July.
    19. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    20. S. Al-Homidan & Q. H. Ansari, 2010. "Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:113:y:2002:i:2:d:10.1023_a:1014830925232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.