Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-018-1219-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
- V. Jeyakumar & G. M. Lee & N. Dinh, 2004. "Lagrange Multiplier Conditions Characterizing the Optimal Solution Sets of Cone-Constrained Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 123(1), pages 83-103, October.
- R. I. Boţ & S. M. Grad & G. Wanka, 2007. "New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 241-255, November.
- N. Dinh & M. A. Goberna & M. A. López & T. H. Mo, 2017. "Farkas-Type Results for Vector-Valued Functions with Applications," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 357-390, May.
- V. Jeyakumar, 2008. "Constraint Qualifications Characterizing Lagrangian Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 31-41, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yingrang Xu & Shengjie Li, 2022. "Optimality and Duality for DC Programming with DC Inequality and DC Equality Constraints," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nguyen Dinh & Dang Hai Long, 2022. "A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel–Lagrange Duality," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 713-748, August.
- N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.
- Nguyen Dinh & Miguel A. Goberna & Dang H. Long & Marco A. López-Cerdá, 2019. "New Farkas-Type Results for Vector-Valued Functions: A Non-abstract Approach," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 4-29, July.
- X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
- Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
- Vsevolod I. Ivanov, 2013. "Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 65-84, July.
- T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
- Satoshi Suzuki & Daishi Kuroiwa, 2020. "Duality Theorems for Convex and Quasiconvex Set Functions," SN Operations Research Forum, Springer, vol. 1(1), pages 1-13, March.
- H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
- Jeyakumar, V. & Lee, G.M. & Dinh, N., 2006. "Characterizations of solution sets of convex vector minimization problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1380-1395, November.
- N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
- Hocine Mokhtar-Kharroubi, 2017. "Convex and convex-like optimization over a range inclusion problem and first applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 277-299, November.
- Fabián Flores-Bazán & Fernando Flores-Bazán & Cristián Vera, 2012. "A complete characterization of strong duality in nonconvex optimization with a single constraint," Journal of Global Optimization, Springer, vol. 53(2), pages 185-201, June.
- Jeyakumar, V. & Li, G., 2010. "New strong duality results for convex programs with separable constraints," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1203-1209, December.
- N. Dinh & M. A. Goberna & M. A. López & T. H. Mo, 2017. "Farkas-Type Results for Vector-Valued Functions with Applications," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 357-390, May.
- Nithirat Sisarat & Rabian Wangkeeree & Gue Myung Lee, 2020. "On Set Containment Characterizations for Sets Described by Set-Valued Maps with Applications," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 824-841, March.
- N. V. Tuyen & C.-F. Wen & T. Q. Son, 2022. "An approach to characterizing $$\epsilon $$ ϵ -solution sets of convex programs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 249-269, July.
- S. Deng, 2009. "Characterizations of the Nonemptiness and Boundedness of Weakly Efficient Solution Sets of Convex Vector Optimization Problems in Real Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 1-7, January.
- Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
- Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
More about this item
Keywords
Farkas lemma; Strong duality; Composite functions; Constraint qualifications; Conic programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-018-1219-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.