IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i2d10.1007_s10957-018-1219-3.html
   My bibliography  Save this article

Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions

Author

Listed:
  • D. H. Fang

    (Jishou University)

  • Y. Zhang

    (Jishou University)

Abstract

The paper is devoted to the study of a new class of conic constrained optimization problems with objectives given as differences of a composite function and a convex function. We first introduce some new notions of constraint qualifications in terms of the epigraphs of the conjugates of these functions. Under the new constraint qualifications, we provide necessary and sufficient conditions for several versions of Farkas lemmas to hold. Similarly, we provide characterizations for conic constrained optimization problems to have the strong or stable strong dualities such as Lagrange, Fenchel–Lagrange or Toland–Fenchel–Lagrange duality.

Suggested Citation

  • D. H. Fang & Y. Zhang, 2018. "Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 351-376, February.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-018-1219-3
    DOI: 10.1007/s10957-018-1219-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1219-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1219-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
    2. V. Jeyakumar & G. M. Lee & N. Dinh, 2004. "Lagrange Multiplier Conditions Characterizing the Optimal Solution Sets of Cone-Constrained Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 123(1), pages 83-103, October.
    3. R. I. Boţ & S. M. Grad & G. Wanka, 2007. "New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 241-255, November.
    4. N. Dinh & M. A. Goberna & M. A. López & T. H. Mo, 2017. "Farkas-Type Results for Vector-Valued Functions with Applications," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 357-390, May.
    5. V. Jeyakumar, 2008. "Constraint Qualifications Characterizing Lagrangian Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 31-41, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingrang Xu & Shengjie Li, 2022. "Optimality and Duality for DC Programming with DC Inequality and DC Equality Constraints," Mathematics, MDPI, vol. 10(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Dinh & Dang Hai Long, 2022. "A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel–Lagrange Duality," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 713-748, August.
    2. N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.
    3. Nguyen Dinh & Miguel A. Goberna & Dang H. Long & Marco A. López-Cerdá, 2019. "New Farkas-Type Results for Vector-Valued Functions: A Non-abstract Approach," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 4-29, July.
    4. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    5. H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
    6. Jeyakumar, V. & Lee, G.M. & Dinh, N., 2006. "Characterizations of solution sets of convex vector minimization problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1380-1395, November.
    7. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    8. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    9. Satoshi Suzuki & Daishi Kuroiwa, 2013. "Some constraint qualifications for quasiconvex vector-valued systems," Journal of Global Optimization, Springer, vol. 55(3), pages 539-548, March.
    10. Satoshi Suzuki & Daishi Kuroiwa, 2015. "Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 62(3), pages 431-441, July.
    11. V. Jeyakumar & Guoyin Li, 2011. "Regularized Lagrangian duality for linearly constrained quadratic optimization and trust-region problems," Journal of Global Optimization, Springer, vol. 49(1), pages 1-14, January.
    12. V. Jeyakumar & G. M. Lee & G. Li, 2015. "Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 407-435, February.
    13. X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
    14. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    15. Vsevolod I. Ivanov, 2013. "Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 65-84, July.
    16. Satoshi Suzuki & Daishi Kuroiwa, 2020. "Duality Theorems for Convex and Quasiconvex Set Functions," SN Operations Research Forum, Springer, vol. 1(1), pages 1-13, March.
    17. N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
    18. Hocine Mokhtar-Kharroubi, 2017. "Convex and convex-like optimization over a range inclusion problem and first applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 277-299, November.
    19. Fabián Flores-Bazán & Fernando Flores-Bazán & Cristián Vera, 2012. "A complete characterization of strong duality in nonconvex optimization with a single constraint," Journal of Global Optimization, Springer, vol. 53(2), pages 185-201, June.
    20. Jeyakumar, V. & Li, G., 2010. "New strong duality results for convex programs with separable constraints," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1203-1209, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-018-1219-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.