IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v59y2014i4p837-863.html
   My bibliography  Save this article

Functional inequalities and theorems of the alternative involving composite functions

Author

Listed:
  • N. Dinh
  • G. Vallet
  • M. Volle

Abstract

We propose variants of non-asymptotic dual transcriptions for the functional inequality of the form $$ f + g + k\circ H \ge h$$ f + g + k ∘ H ≥ h . The main tool we used consists in purely algebraic formulas on the epigraph of the Legendre-Fenchel transform of the function $$ f + g + k\circ H$$ f + g + k ∘ H that are satisfied in various favorable circumstances. The results are then applied to the contexts of alternative type theorems involving composite and DC functions. The results cover several Farkas-type results for convex or DC systems and are general enough to face with unpublished situations. As applications of these results, nonconvex optimization problems with composite functions, convex composite problems with conic constraints are examined at the end of the paper. There, strong duality, stable strong duality results for these classes of problems are established. Farkas-type results and stable form of these results for the corresponding systems involving composite functions are derived as well. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
  • Handle: RePEc:spr:jglopt:v:59:y:2014:i:4:p:837-863
    DOI: 10.1007/s10898-013-0100-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0100-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0100-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Dinh & V. Jeyakumar & G. M. Lee, 2005. "Sequential Lagrangian Conditions for Convex Programs with Applications to Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 85-112, April.
    2. M. Volle, 2002. "Duality Principles for Optimization Problems Dealing with the Difference of Vector-Valued Convex Mappings," Journal of Optimization Theory and Applications, Springer, vol. 114(1), pages 223-241, July.
    3. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    4. Radu Ioan Bot, 2010. "Conjugate Duality in Convex Optimization," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-04900-2, July.
    5. V. Jeyakumar, 2008. "Constraint Qualifications Characterizing Lagrangian Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 31-41, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Dinh & M. A. Goberna & M. A. López & T. H. Mo, 2017. "Farkas-Type Results for Vector-Valued Functions with Applications," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 357-390, May.
    2. D. H. Fang & Y. Zhang, 2018. "Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 351-376, February.
    3. Nguyen Dinh & Dang Hai Long, 2022. "A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel–Lagrange Duality," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 713-748, August.
    4. Nguyen Dinh & Miguel A. Goberna & Dang H. Long & Marco A. López-Cerdá, 2019. "New Farkas-Type Results for Vector-Valued Functions: A Non-abstract Approach," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 4-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.
    2. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    3. Hocine Mokhtar-Kharroubi, 2017. "Convex and convex-like optimization over a range inclusion problem and first applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 277-299, November.
    4. N. Dinh & M. A. Goberna & M. A. López & T. H. Mo, 2017. "Farkas-Type Results for Vector-Valued Functions with Applications," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 357-390, May.
    5. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    6. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    7. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    8. William Haskell & J. Shanthikumar & Z. Shen, 2013. "Optimization with a class of multivariate integral stochastic order constraints," Annals of Operations Research, Springer, vol. 206(1), pages 147-162, July.
    9. Jean-Paul Penot, 2011. "The directional subdifferential of the difference of two convex functions," Journal of Global Optimization, Springer, vol. 49(3), pages 505-519, March.
    10. Tao Pham Dinh & Nam Nguyen Canh & Hoai Le Thi, 2010. "An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs," Journal of Global Optimization, Springer, vol. 48(4), pages 595-632, December.
    11. Stefan Sremac & Fei Wang & Henry Wolkowicz & Lucas Pettersson, 2019. "Noisy Euclidean distance matrix completion with a single missing node," Journal of Global Optimization, Springer, vol. 75(4), pages 973-1002, December.
    12. Hoai Le Thi & Tao Pham Dinh, 2011. "On solving Linear Complementarity Problems by DC programming and DCA," Computational Optimization and Applications, Springer, vol. 50(3), pages 507-524, December.
    13. Hoai An Le Thi & Mahdi Moeini, 2014. "Long-Short Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 199-224, April.
    14. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    15. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2023. "Sparse optimization via vector k-norm and DC programming with an application to feature selection for support vector machines," Computational Optimization and Applications, Springer, vol. 86(2), pages 745-766, November.
    16. Manuel Ruiz & Olivier Briant & Jean-Maurice Clochard & Bernard Penz, 2013. "Large-scale standard pooling problems with constrained pools and fixed demands," Journal of Global Optimization, Springer, vol. 56(3), pages 939-956, July.
    17. Xiang Zhang & Yichao Wu & Lan Wang & Runze Li, 2016. "Variable selection for support vector machines in moderately high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 53-76, January.
    18. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2015. "Optimal Replenishment Order Placement in a Finite Time Horizon," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1078-1089, March.
    19. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    20. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:59:y:2014:i:4:p:837-863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.