IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v135y2007i2d10.1007_s10957-007-9247-4.html
   My bibliography  Save this article

New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems

Author

Listed:
  • R. I. Boţ

    (Chemnitz University of Technology)

  • S. M. Grad

    (Chemnitz University of Technology)

  • G. Wanka

    (Chemnitz University of Technology)

Abstract

We present a new constraint qualification which guarantees strong duality between a cone-constrained convex optimization problem and its Fenchel-Lagrange dual. This result is applied to a convex optimization problem having, for a given nonempty convex cone K, as objective function a K-convex function postcomposed with a K-increasing convex function. For this so-called composed convex optimization problem, we present a strong duality assertion, too, under weaker conditions than the ones considered so far. As an application, we rediscover the formula of the conjugate of a postcomposition with a K-increasing convex function as valid under weaker conditions than usually used in the literature.

Suggested Citation

  • R. I. Boţ & S. M. Grad & G. Wanka, 2007. "New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 241-255, November.
  • Handle: RePEc:spr:joptap:v:135:y:2007:i:2:d:10.1007_s10957-007-9247-4
    DOI: 10.1007/s10957-007-9247-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9247-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9247-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. B. G. Frenk & G. Kassay, 1999. "On Classes of Generalized Convex Functions, Gordan–Farkas Type Theorems, and Lagrangian Duality," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 315-343, August.
    2. M. Volle, 2002. "Duality Principles for Optimization Problems Dealing with the Difference of Vector-Valued Convex Mappings," Journal of Optimization Theory and Applications, Springer, vol. 114(1), pages 223-241, July.
    3. R. I. Boţ & S. M. Grad & G. Wanka, 2006. "Fenchel-Lagrange Duality Versus Geometric Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 33-54, April.
    4. R. I. Boţ & G. Kassay & G. Wanka, 2005. "Strong Duality for Generalized Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 127(1), pages 45-70, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. H. Fang & Y. Zhang, 2018. "Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 351-376, February.
    2. Nguyen Dinh & Dang Hai Long, 2022. "A Perturbation Approach to Vector Optimization Problems: Lagrange and Fenchel–Lagrange Duality," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 713-748, August.
    3. Bot, Radu Ioan & Lorenz, Nicole, 2011. "Optimization problems in statistical learning: Duality and optimality conditions," European Journal of Operational Research, Elsevier, vol. 213(2), pages 395-404, September.
    4. N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. D. Fajardo & J. Vidal, 2018. "Necessary and Sufficient Conditions for Strong Fenchel–Lagrange Duality via a Coupling Conjugation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 57-73, January.
    2. Maria C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2016. "On the Fritz John saddle point problem for differentiable multiobjective optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 917-933, December.
    3. Radu Boţ & Sorin-Mihai Grad & Gert Wanka, 2007. "A general approach for studying duality in multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 417-444, June.
    4. Frenk, J.B.G. & Kassay, G., 2005. "Lagrangian duality and cone convexlike functions," ERIM Report Series Research in Management ERS-2005-019-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. R. I. Boţ & S. M. Grad & G. Wanka, 2007. "Fenchel’s Duality Theorem for Nearly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 509-515, March.
    6. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    7. M. Adán & V. Novo, 2004. "Proper Efficiency in Vector Optimization on Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 515-540, June.
    8. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
    9. Giorgio Giorgi, 2014. "Again on the Farkas Theorem and the Tucker Key Theorem Proved Easily," DEM Working Papers Series 094, University of Pavia, Department of Economics and Management.
    10. Yalçın Küçük & İlknur Atasever & Mahide Küçük, 2012. "Weak Fenchel and weak Fenchel-Lagrange conjugate duality for nonconvex scalar optimization problems," Journal of Global Optimization, Springer, vol. 54(4), pages 813-830, December.
    11. J. B. G. Frenk & G. Kassay, 2007. "Lagrangian Duality and Cone Convexlike Functions," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 207-222, August.
    12. Milan Hladík, 2011. "Optimal value bounds in nonlinear programming with interval data," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 93-106, July.
    13. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    14. Adan, M. & Novo, V., 2003. "Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness," European Journal of Operational Research, Elsevier, vol. 149(3), pages 641-653, September.
    15. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    16. Ivan Ginchev & Denitza Gintcheva, 2013. "Characterization and recognition of d.c. functions," Journal of Global Optimization, Springer, vol. 57(3), pages 633-647, November.
    17. N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
    18. C. R. Chen & S. J. Li, 2009. "Different Conjugate Dual Problems in Vector Optimization and Their Relations," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 443-461, March.
    19. Najafi, Arsalan & Homaee, Omid & Jasiński, Michał & Tsaousoglou, Georgios & Leonowicz, Zbigniew, 2023. "Integrating hydrogen technology into active distribution networks: The case of private hydrogen refueling stations," Energy, Elsevier, vol. 278(PB).
    20. R. I. Boţ & S. M. Grad & G. Wanka, 2006. "Fenchel-Lagrange Duality Versus Geometric Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 33-54, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:135:y:2007:i:2:d:10.1007_s10957-007-9247-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.