IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v136y2008i1d10.1007_s10957-007-9294-x.html
   My bibliography  Save this article

Constraint Qualifications Characterizing Lagrangian Duality in Convex Optimization

Author

Listed:
  • V. Jeyakumar

    (University of New South Wales)

Abstract

In convex optimization, a constraint qualification (CQ) is an essential ingredient for the elegant and powerful duality theory. Various constraint qualifications which are sufficient for the Lagrangian duality have been given in the literature. In this paper, we present constraint qualifications which characterize completely the Lagrangian duality.

Suggested Citation

  • V. Jeyakumar, 2008. "Constraint Qualifications Characterizing Lagrangian Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 31-41, January.
  • Handle: RePEc:spr:joptap:v:136:y:2008:i:1:d:10.1007_s10957-007-9294-x
    DOI: 10.1007/s10957-007-9294-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9294-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9294-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hocine Mokhtar-Kharroubi, 2017. "Convex and convex-like optimization over a range inclusion problem and first applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 277-299, November.
    2. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    3. Satoshi Suzuki, 2019. "Optimality Conditions and Constraint Qualifications for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 963-976, December.
    4. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    5. Fabián Flores-Bazán & Fernando Flores-Bazán & Cristián Vera, 2012. "A complete characterization of strong duality in nonconvex optimization with a single constraint," Journal of Global Optimization, Springer, vol. 53(2), pages 185-201, June.
    6. Jeyakumar, V. & Li, G., 2010. "New strong duality results for convex programs with separable constraints," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1203-1209, December.
    7. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    8. D. H. Fang & Y. Zhang, 2018. "Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 351-376, February.
    9. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    10. Satoshi Suzuki & Daishi Kuroiwa, 2013. "Some constraint qualifications for quasiconvex vector-valued systems," Journal of Global Optimization, Springer, vol. 55(3), pages 539-548, March.
    11. V. Jeyakumar & Guoyin Li, 2011. "Regularized Lagrangian duality for linearly constrained quadratic optimization and trust-region problems," Journal of Global Optimization, Springer, vol. 49(1), pages 1-14, January.
    12. Satoshi Suzuki & Daishi Kuroiwa, 2020. "Duality Theorems for Convex and Quasiconvex Set Functions," SN Operations Research Forum, Springer, vol. 1(1), pages 1-13, March.
    13. N. Dinh & G. Vallet & M. Volle, 2014. "Functional inequalities and theorems of the alternative involving composite functions," Journal of Global Optimization, Springer, vol. 59(4), pages 837-863, August.
    14. N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:136:y:2008:i:1:d:10.1007_s10957-007-9294-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.